

Міністерство освіти і науки

України

Київський національний

університет технологій та

дизайну

Кафедра комп’ютерних

наук

M

M

E
T

H
O

D
S

 A
N

D
 S

Y
S

T
E

M
S

 O
F

 A
R

T
IF

IC
IA

L
 I

N
T

E
L

L
IG

E
N

C
E

ethods and

systems of

artificial

intelligence

SCHERBAN V.Y.

DEMKIVSKIY E.O.

DEMKIVSKA T.I.

SHRAMCHENKO B.L.

REZANOVA V.G.

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
KYIV NATIONAL UNIVERSITY OF TECHNOLOGY

AND DESIGN
DEPARTMENT OF COMPUTER SCIENCE

SCHERBAN V.Y., DEMKIVSKIY E.O., DEMKIVSKA T.I., SHRAMCHENKO B.L., REZANOVA V.G.

Methods and systems of artificial
intelligence

Kyiv 2022

УДК 004.42
ББК 65.9(4Укр)306.4-6

Recommended by the Academic Council of the Kyiv National University of Technology and

Design for a wide range of teachers, scientists, graduate students, masters and students of

specialized higher education institutions, engineering and technical staff of the computer

industry

(Protocol № 6 of 26 January 2022)

Team of authors:

SHCHERBAN V. YU. - Laureate of the State Prize of Ukraine in the field of science and technology,
Academician of the International Academy of Computer Science and Systems, Doctor of Technical Sciences, Head
of the Department of Computer Science, Kyiv National University of Technology and Design;

DEMKIVSKIY Y.O.- Ph.D., Associate Professor, Associate Professor, Department of Information Systems,
Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv

DEMKIVSKA T..I. - Ph.D., Associate Professor, Associate Professor, Department of Computer Science and
Technology, Kyiv National University of Technology and Design

SHRAMCHENKO B.L.. - Ph.D., Associate Professor, Associate Professor, Department of Computer Science
and Technology, Kyiv National University of Technology and Design

REZANOVA V.G - Ph.D., Associate Professor, Associate Professor, Department of Computer Science and
Technology, Kyiv National University of Technology and Design

Reviewers:
OPANASENKO V.M. - Doctor of Technical Sciences, Professor, leading researcher Institute of Cybernetics

of the National Academy of Sciences of Ukraine

CHUPRINKA V.I. - Doctor of Technical Sciences, Professor of the Department of Computer Science, Kyiv

National University of Technology and Design

Щ 610 SHCHERBAN V. Yu. Methods and systems of artificial intelligence / V. YU.
Shcherban, Y.O. Demkivskiy, T,I. Demkivska, B. L. Shramchenko, V.G. Rezanova – К.: ТОВ
"Фастбінд Україна", 2022. – 210 p.

ISBN 978-617-8237-17-2

The textbook is aimed at the formation of a basic set of knowledge for students of the
specialty 122 Computer Science and student-oriented preparation of a bachelor's degree. The
tutorial discusses the models and methods used in artificial intelligence systems. Considerable
attention is paid to the design of artificial intelligence systems, the consideration of intelligent
systems based on knowledge and means of representing and processing knowledge. The material
is presented in accordance with the program of the discipline. Contains theoretical material, tasks
for independent work of students and examples of their implementation, questions for self-
control. The tutorial can be used by teachers, students and graduate students in the field of
computer science.

УДК 004.42
ББК 65.9(4Укр)306.4-6

ISBN 978-617-8237-17-2 © V. Yu. Shcherban, 2022
© ТОВ "Фастбінд Україна", 2022

3

CONTENT

Introduction ... 5

1. Basic concepts and definitions .. 6

1.1. The concept of artificial intelligence. History of development. Intellectual
task ... 6

1.2. The concept of intelligent system .. 9

1.3. List of control questions on the topic № 1 .. 11

2. Ways of presenting an intellectual problem and methods of finding solutions .. 11

2.1. Ways of presenting an intellectual problem, their advantages and
disadvantages ... 11

2.2. Search for solutions to an intellectual problem in space. Methods of blind
search and heuristic search .. 12

2.3. Heuristic search methods .. 14

2.4. Methods for finding solutions to an intellectual problem in the case of
reducing problems to a set of problems ... 17

2.5. List of control questions on the topic № 2 .. 20

3. Representation of knowledge in artificial intelligence system 21

3.1. Knowledge and models of knowledge representation in artificial
intelligence systems ... 21

3.2. Production models of knowledge representation .. 28

3.3. Solution management in productive systems ... 30

3.4. List of control questions on the topic № 3 .. 33

4. Knowledge-based problem solvers ... 34

4.1. Semantic grids: basic concepts, types, methods of description and logical
derivation of semantic grids ... 34

4.2. Frames: basic concepts, frame structure, frame models 35

4.3. Expert systems: purpose and principles of construction, generalized
architecture, classes of problems that are solved with the help of expert
systems ... 37

4.4. Stages of development of expert systems, acquisition of knowledge 40

4.5. Scope of expert systems .. 41

4.6. Search and explanation of solutions in expert systems 41

4.7. Knowledge engineering .. 42

4.8. List of control questions on the topic № 4 .. 43

4

5. Modern trends and approaches to the creation of artificial intelligence systems 43

5.1. Modern software and tools for creating artificial intelligence systems:
Visual Prolog, Allegro Common Lips, CLIPS, JESS.. 43

5.2. An ontological approach to the presentation and interpretation of
knowledge in distributed information environments such as the Internet 51

5.3. List of control questions on the topic № 5 .. 62

6. Tasks for practical and independent work .. 62

6.1. Task № 1. Search for solutions to an intellectual problem in space.
Methods of blind search and heuristic search .. 62

6.2. List of соntrol questions on the task № 1 ... 80

6.3. Task № 2. Сonstruction of autoregressive models in Eviews 80

6.4. List of соntrol questions on the task № 2 ... 93

6.5. Task № 3. Determining the best autoregressive model and building a
forecast based on the selected model ... 93

6.6. List of соntrol questions on the task № 3 ... 97

6.7. Task № 4 Topic: Starting, getting started and basics of Visual Prolog........ 97

6.8. List of соntrol questions on the task № 4 ... 116

6.9. Task № 5. Unification and search with return .. 117

6.10. List of соntrol questions on the task № 5 ... 129

6.11. Task №6. Cycle and recursion .. 129

6.12. List of соntrol questions on the task № 6 ... 145

6.13. Task № 7. Lists and recursion .. 145

6.14. List of соntrol questions on the task № 7 ... 162

6.15. Task № 8. Internal database of facts ... 162

6.16. List of соntrol questions on the task № 8 ... 182

Recommended books .. 183

Additions ... 184

Additions A. Determining relationships based on facts 184

Additions B. Perceptroni .. 190

Addition C. Method of group consideration of arguments 207

5

Introduction

The term intelligence comes from the Latin intellectus – meaning mind;

human mental abilities. Accordingly, artificial intelligence (AI) is usually
interpreted as the property of automatic systems to assume certain functions of
human intelligence, for example, to choose and make optimal decisions based
on previous experience and rational analysis of external influences.

But there is no exact definition for this science, because philosophy does
not solve the question of the nature and status of human intelligence. There is no
exact criterion for the computer to achieve "reasonableness", although a number
of hypotheses have been proposed before artificial intelligence, such as the
Turing Test or the Newell-Simon hypothesis. Today, there are many approaches
to both understanding AI tasks and creating intelligent systems.

Historically, there have been three main directions in AI modeling.
In the first approach, the object of research is the structure and

mechanisms of the human brain, and the ultimate goal is to reveal the secrets of
thinking. Necessary stages of research in this direction are the construction of
models based on psychophysiological data, conducting experiments with them,
making new hypotheses about the mechanisms of intellectual activity,
improving models, etc.

The second approach as an object of study considers AI. Here we are
talking about modeling intellectual activity with the help of computers. The
purpose of work in this direction is to create algorithmic and software for
computers, which allows you to solve intellectual problems no worse than
humans.

The third approach focuses on the creation of mixed human-machine, or,
as they say, interactive intelligent systems, a symbiosis of the possibilities of
natural and artificial intelligence. The most important problems in these studies
are the optimal distribution of functions between natural and artificial
intelligence and the organization of dialogue between man and machine.

Artificial intelligence is a very young field of research, founded in 1956.
Its historical path resembles a sine wave, each "take-off" of which was initiated
by some new idea. Today, its development is in decline, giving way to the
application of already achieved results in other areas of science, industry,
business and even everyday life.

6

1. Basic concepts and definitions

1.1. The concept of artificial intelligence. History of development.

Intellectual task

Artificial intelligence is a relatively young scientific field that lies at the

intersection of various disciplines, such as discrete mathematics, linguistics,
psychology, programming, mathematical statistics, and others.

The term intelligence comes from the Latin intellectus – meaning mind;
human mental abilities.

 Accordingly, artificial intelligence (AI) is usually interpreted as the
property of automatic systems to assume certain functions of human
intelligence, for example, to choose and make optimal decisions based on
previous experience and rational analysis of external influences.

Consider the term "intellectual task". In order to explain how an
intellectual task differs from a simple task, it is necessary to introduce the term
"algorithm" – one of the cornerstones of cybernetics.

An algorithm is understood as an exact instruction to perform in a certain
order a sequence of operations to solve any problem from a given class of tasks.

 The term "algorithm" comes from the name of the Uzbek mathematician
Al-Khorezmi, who in the IX century proposed the simplest arithmetic
algorithms.

Tasks related to finding an algorithm for solving a class of problems of a
certain type will be called intelligent.

Therefore, it seems quite natural to exclude from the class of intellectual
such tasks for which there are standard methods of solution.

Examples of such problems are purely computational problems: solving a
system of linear algebraic equations, numerical integration of differential
equations, etc. To solve this kind of problem, there are standard algorithms that
represent a certain sequence of elementary operations that can be easily
implemented in the form of a computer program.

 In contrast, for a wide class of intellectual problems, such as pattern
recognition, chess, proof of theorems, etc., on the contrary, this formal division
of the solution search process into individual elementary steps is often quite
difficult, even if their solution is simple.

Thus, we can paraphrase the definition of intelligence as a universal
super-algorithm that can create algorithms for solving specific problems.

The activity of the brain that has intelligence, aimed at solving intellectual
problems, we will call thinking, or intellectual activity.

 Intelligence and thinking are organically linked to solving problems such
as proof of theorems, logical analysis, situation recognition, behavior planning,
games and control in conditions of uncertainty.

7

 Characteristic features of intelligence that are manifested in the process
of solving problems are the ability to learn, generalize, accumulate experience
(knowledge and skills) and adapt to changing conditions in the process of
solving problems.

 Turing proposed a criterion for determining whether a computer has the
ability to think. Its content is as follows. There are people and a car in different
rooms. They cannot see each other, but have the opportunity to exchange
information (for example, via e-mail). If in the process of dialogue between the
participants of the game people fail to establish that one of the participants is a
machine, then such a machine can be considered as having intelligence. (2029)

By the way, Turing proposed an interesting plan to imitate thinking:
"Trying to imitate the intelligence of an adult," writes Turing, "we have to think
a lot about the process by which the human brain reached its true state. Why
should we instead of trying to create a program that mimics the intelligence of
an adult, do not try to create a program that would mimic the intelligence of a
child? After all, if a child's intelligence receives appropriate education, it
becomes the intelligence of an adult ... programmed ... Thus, we divide our
problem into two parts: the task of building a "child program" and the task of
"educating" this program.

Looking ahead, we can say that this is the path used by almost all AI
systems. After all, it is clear that it is almost impossible to put all the knowledge
in a rather complex system. Thanks to these qualities of intelligence, the brain
can solve a variety of problems, as well as easily rebuild from one task to
another.

History of AI systems development. Artificial intelligence has a long
history. Another Plato, Aristotle, Socrates, Descartes, Leibniz, J. Bull; and later
N. Wiener sought to describe thinking as a set of some basic operations, rules
and procedures.

 As a scientific field, artificial intelligence emerged in the mid – 60's of
XX century. Its origin is connected with the direction of automation of human
intellectual activity.

There is no exact definition for this science, because philosophy does not
address the question of the nature and status of human intelligence. There is no
exact criterion for the computer to achieve "reasonableness.

 AI is one of the areas of computer science, which aims to develop
computer systems capable of performing functions traditionally considered
intelligent: language comprehension, inference, use of accumulated knowledge,
learning, action planning, etc.

Thus, AI is a young area of research. Its historical path resembles a sine
wave, each "take-off" of which was initiated by some new idea. Today, its
development is in decline, giving way to the application of the results already
achieved in other areas of science, industry, business and even everyday life.

Historically, there have been three main approaches in AI modeling

8

In the first approach, the object of research is the structure and
mechanisms of the human brain, and the ultimate goal is to reveal the secrets of
thinking. Necessary stages of research in this direction are the construction of
models based on psychophysiological data, conducting experiments with them,
making new hypotheses about the mechanisms of intellectual activity,
improving models, etc.

The second approach as an object of study considers AI. Here we are
talking about modeling intellectual activity with the help of computers. The
purpose of work in this direction is to create algorithmic and software for
computers, which allows you to solve intellectual problems no worse than
humans.

The third approach focuses on the creation of mixed human-machine, or,
as they say, interactive intelligent systems, on the symbiosis (interaction and
coexistence) of the possibilities of natural and artificial intelligence. The most
important problems in these studies are the optimal distribution of functions
between natural and artificial intelligence and the organization of dialogue
between man and machine.

Thus, AI research began immediately after the advent of the first
computers. For 50 years AI has passed in the development of 4 basic stages:

- late 50's – early 70's – research in the field of "general intelligence",
attempts to model the general intellectual processes inherent in man: free
dialogue, solving various problems, proving theorems, game theory, creating
poems and music;

- 70s – 80s – research and development of approaches to the formal
presentation of knowledge, attempts to reduce intellectual activity to formal
transformations.

- 80s – 90s – development of systems in subject areas that have applied
practical value (expert_systems);

- after the 90's – frontal work on the creation of computers of the 5th
generation, which would have_intellectual_possibilities.

Stage 1 – the establishment of AI – the period from 1943 to 1956. Work
in the field of AI began with the emergence of neurocybernetics.
Neurocybernetics is a scientific field that studies the basic laws of organization
and functioning of neurons and neuronal formations. The main method of
neurocybernetics is mathematical modeling, and the data of a physiological
experiment are used as a source material for creating models. Neurocomputers,
which, in a broad sense, were perceived as prototypes of the "artificial brain" –
an intelligent system that must be built and function similarly to the human
brain. The prefix "neuro" emphasized the difference between such a system and
a traditional computer and its functional proximity to the brain. In 1943,
American scientists McCall and Pitts proposed a model of a formal logic neuron
that could be in two stable states. (Neuron (from the ancient Greek νεῦρον –

9

fiber, nerve) – an electrically excitable cell that processes and transmits
information in the form of an electrical or chemical signal).

The period from 1956 to 1969 can be called a period of heuristic search
and proof of theorems (heuristic algorithm, or just heuristics – no one guarantees
that the solution is accurate. So such algorithms are approximate and
inaccurate).

 In 1956, Simon created the program "Logic Theorist", which is the first
program to prove theorems (this is the realization of the idea that you can make
a program that would solve the problem like a man). This program finds a proof
of the theorems of mathematical logic. This was the first attempt to penetrate the
complex process of thinking through research in the field of artificial
intelligence. However, the effectiveness of this program was low. A further
solution to this program was the GPS program (general problem solver). The
solution of problems in this program was carried out on the basis of search
algorithms in the space of possible solutions according to heuristic rules, which
directed the search to the desired goal. It was the first program to use human
reasoning.

In the early 60's intensive research in the field of neural networks. In
1962, Rosenblatt created the perceptron, a device for recognizing images,
including letters of the alphabet. However, its capabilities were limited.

Representation of knowledge (1969 - 1979). By the end of the 1960s, it
was found that general knowledge (general strategies for finding solutions) was
not enough to solve practically important problems. Successful solution of
applied problems is possible only with well-structured special knowledge. This
was first implemented in the DENDRAL program (Feigenbaum, Bukhenen,
Lederberg), which was used to determine the molecular structure of unknown
organic compounds according to data obtained using a mass spectrometer. This
program used the empirical knowledge of chemists for the first time, such
programs that accumulate the knowledge of experts were called "expert
systems"

1.2. The concept of intelligent system

Intelligent system or Intelligent information system is a type of automated
information systems, sometimes IIS is called a knowledge-based system. IIS is a
set of software, linguistic and logical-mathematical tools for the implementation
of the main task: to support human activities and search for information in the
mode of extended dialogue in natural language. Tasks solved by the following
systems:

1) interpretation of data. This is one of the traditional tasks for expert
systems. Interpretation means the process of determining the content of data, the
results of which must be consistent and correct. Multivariate data analysis is
usually provided;

10

2) diagnosis. Diagnosis is the process of correlating an object with a
certain class of objects and detecting a fault in some system. A fault is a
deviation from the norm. This interpretation allows us to consider from a single
theoretical standpoint and the failure of equipment in technical systems, and
diseases of living organisms, and all sorts of natural anomalies. An important
specificity here is the need to understand the functional structure ("anatomy") of
the diagnostic system;

3) monitoring. The main task of monitoring is the continuous
interpretation of data in real time and signaling the output of certain parameters
beyond acceptable limits. The main problems are the "omission" of the alarm
situation and the inverse task of "false" operation. The complexity of these
problems is in the blurring of the symptoms of anxiety and the need to take into
account the temporary context;

4) design. Design is to prepare specifications for Creation of "objects"
with predefined properties. The specification means the whole set of necessary
documents - drawings, explanatory notes, etc. The main problems here -
obtaining a clear structural description of knowledge about the object and the
problem of "trace". only the design decisions themselves, but also the reasons
for their adoption. Thus, in the design tasks are closely linked two main
processes performed within the relevant EC: the decision-making process and
the process of explanation;

5) forecasting. Forecasting allows you to predict the consequences of
certain events or phenomena based on the analysis of available data. Forecasting
systems logically derive probable consequences from given situations. The
forecasting system usually uses a parametric dynamic model in which the values
of the parameters are "adjusted" to a given situation. The conclusions drawn
from this model form the basis for predictions with probable estimates;

6) planning. Planning means finding action plans related to objects
capable of performing certain functions. Such ECs use models of behavior of
real objects in order to logically deduce the consequences of planned activities;

7) training. Learning means using a computer to teach a discipline or
subject. Teaching systems diagnose errors in the study of any discipline using a
computer and suggest the right solutions. They accumulate knowledge about the
hypothetical "student" and his characteristic mistakes, then in the work they are
able to diagnose weaknesses in the knowledge of students and find appropriate
means to eliminate them. In addition, they plan an act of communication with
the student depending on the student's progress in order to transfer knowledge;

 8) management. Management is a function of an organized system that
supports a certain mode of operation. This type of EC controls the behavior of
complex systems in accordance with specified specifications;

9) decision support. Decision support is a set of procedures that provides
the decision maker with the necessary information and recommendations to
facilitate the decision-making process. These ECs help professionals to choose

11

and form the right alternative among the many choices in making responsible
decisions.

In the general case, all knowledge-based systems can be divided into
systems that solve the problem of analysis, and systems that solve the problem
of synthesis. The main difference between analysis tasks and synthesis tasks is
that if in analysis tasks many solutions can be listed and included in the system,
then in synthesis tasks many solutions are not potentially limited and are built
from solutions, components or problems. The tasks of the analysis are: data
interpretation, diagnostics, decision support; the tasks of synthesis include
design, planning, management. Combined: teaching, monitoring, forecasting.

1.3. List of control questions on the topic № 1

1. Explain the term Intelligence.
2. What is artificial intelligence.
3. Name and describe the directions of AI modeling.
4. Explain the term intellectual task.
5. Examples of intellectual tasks.
6. Name the characteristics of intelligence.
7. Describe the Turing test.
8. Briefly describe the history of AI systems.
9. What is an intelligent system.
10. Describe the problems solved by intelligent systems.

2. Ways of presenting an intellectual problem and methods of finding

solutions

2.1. Ways of presenting an intellectual problem, their advantages and

disadvantages

All intellectual tasks can be divided into two classes: cognition and
transformation. In the tasks of cognition, the goal is to determine the
characteristics of objects, situations, processes. Processes of solving cognitive
problems are traditionally processes of research, analysis, verification, search. In
the tasks of transformation, the goal is to create new objects, situations,
processes. Processes for solving transformation problems, as a rule, are
processes of synthesis, design, construction. In practice, the elements of
cognition and transformation are closely interconnected and intertwined.

The main types of actions performed in solving intellectual problems are:
transformation of connections of objects;

- creation of new objects;
- selection of an object that meets the specified requirements;
- calculation of parameter values;

12

- search for information that satisfies certain conditions;
- withdrawal; search for specified elements in the object model; concept

formation.
The disadvantages of intellectual problems are the incompleteness,

inaccuracy and inconsistency of knowledge, as well as the large dimension of
the solution space, which does not allow to solve them by simple search. In such
problems, there are often no clear criteria for choosing the optimal solution, and
the problem itself is not always fully formalized. An example of an intellectual
task is the recognition of images, ie determining the affiliation of the observed
object to one of the predefined categories. The main properties of intellectual
tasks are:

- symbolic representation of the conditions of the problem;
- lack of clear statement of the problem;
- lack of a solution acceptable for practical use, which always provides the

correct result;
- incompleteness, inaccuracy and inconsistency of knowledge about;
- lack of clear unambiguous criteria for choosing the optimal solution;
- large dimension of decision space.
Intellectual activity is the actions of people that lead to the desired result

in situations where there is no algorithm to solve the problem. In other words, it
is the process of obtaining the desired result in intellectual tasks.

The advantage is that a person has a certain set of knowledge about the
world around him, which allows him to navigate in different situations and make
the right decisions. In addition, a person is able to use this knowledge.

2.2. Search for solutions to an intellectual problem in space. Methods

of blind search and heuristic search

 When planning in the task space, space is formed as a result of the
introduction of a set of tasks of the type: "part – whole", "task – subtask",
"general case – special case", etc.

 In other words, the task space reflects the decomposition of tasks into
subtasks (goals on subgoals). The problem is to find the decomposition of the
original problem into subtasks, which leads to problems whose solution the
system knows. For example, the IC knows how to calculate the values of sin x
and cos x for any value of the argument and how to perform the division
operation. If it is necessary to calculate tg x, then the solution of the PR-problem
will be to present this problem in the form of decomposition

tgx = sin x / cos x (except х = / 2 + k).

Representation of problems in the state space involves the task of a

number of descriptions: states, sets of operators and their effects on the

13

transitions between states, target states. State descriptions can be character
strings, vectors, two-dimensional arrays, trees, lists, etc. Operators translate one
state into another. Sometimes they are represented as products A => B, which
means that state A will turn into state B.

The space of states can be represented as a graph, the vertices of which
are denoted by states, and the arcs - by operators.

Thus, the problem of finding a solution to the problem <A, B> when
planning by states is presented as a search problem on the graph of the path from
A to B. Usually the graphs are not set, but generated as needed.

There are blind and directed methods of finding a way.
The idea of the blind method is very simple and obvious. A point is taken

randomly in the admissible domain, and the value of the criterion in it is
compared with the current best. If a new random point is worse than the one that
is stored as the current best, then take another point. If you find a point where
the criterion is better, it is remembered as the current best. It is guaranteed that
with an unlimited increase in the number of attempts we approach the global
optimum, ie. the current best value found will be so close to the exact solution.

 The blind method has two types: search deep and search wide. When
searching in depth, each alternative is explored to the end, without considering
the other alternatives. The method is bad for "tall" trees, as you can easily slip
past the right branch and spend a lot of effort exploring "empty" alternatives.

When searching broadly at a fixed level, all alternatives are explored and
only then is the transition to the next level.

 The method may be worse than the depth search method if in the graph
all the paths leading to the target vertex are located at approximately the same
depth.

 Both blind methods are time consuming and therefore targeted search
methods are needed

The method of branches and boundaries. From the formed in the process
of finding unfinished paths is selected the shortest and continues by one step.
The obtained new unfinished paths (there are as many of them as there are
branches in this vertex) are considered next to the old ones, and the shortest of
them continues again by one step. The process is repeated until the first
achievement of the target vertex, the decision is remembered. Then from the
remaining unfinished paths are excluded longer than the completed path, or
equal to it, and the remaining continue according to the same algorithm as long
as their length is less than the completed path. As a result, either all unfinished
paths are excluded, or a complete path is formed among them, shorter than
previously obtained. The latter path begins to play the role of a standard, etc.

 Moore's shortest path algorithm. The original vertex X0 is denoted by the
number 0. Suppose that during the operation of the algorithm at the current step
we obtain a set of child vertices X(xi) of the vertex xi. Then all previously
obtained vertices are deleted from it, the remaining ones are denoted by a label

14

increased by one in comparison with the label of the vertex xi, and pointers to Xi

are drawn from them. Next, on the set of marked vertices, not yet appearing as
pointer addresses, the vertex with the smallest label is selected and child vertices
are constructed for it. Vertex markup is repeated until the target vertex is
obtained.

Dijkstra's algorithm for determining paths with a minimum cost is a
generalization of Moore's algorithm by introducing arcs of variable length.

Dora and Mickey search algorithm with low cost. Used when the cost of
the search is high compared to the cost of the optimal solution. In this case,
instead of selecting the vertices that are least distant from the beginning, as in
Moore's and Dijkstra's algorithms, a vertex is chosen for which the heuristic
estimate of the distance to the target is the smallest. With a good score, you can
quickly get a solution, but there is no guarantee that the path will be minimal.

Hart, Nilsson and Raphael algorithm. The algorithm combines both
criteria: the cost of the path to the vertex g[x) and the cost of the path from the
vertex h(x) – in the additive estimation function f{x} = g(x}- h(x). Provided h(x)
< hp(x), where hp(x) is the real distance to the target, the algorithm guarantees
finding the optimal path. The path search algorithms on the graph also differ in
the direction of search.

Direct search starts from the initial state and is usually used when the
target state is specified implicitly. The inverse search starts from the target state
and is used when the initial state is set implicitly and the target state is explicit.
Bidirectional search requires a satisfactory solution to two problems: changing
the direction of the search and optimizing the "meeting point". One of the
criteria for solving the first problem is to compare the "width" of the search in
both directions – choose the direction that narrows the search. The second
problem is caused by the fact that the forward and reverse paths can diverge and
the more the search, the more likely it is.

2.3. Heuristic search methods

The word "heuristics" is interpreted as a method of search, inventions.
The foundations of heuristic methods were laid in the philosophical concept of
Socrates. However, only in the XX century. this concept has received wide
scientific and practical recognition as heuristic thinking, heuristic techniques and
methods, heuristic properties. Although today there is no single unambiguous
interpretation of heuristics as such, but it is widely associated with creativity,
creative search, intelligence, foresight.

Heuristic methods are special methods of analysis based on the use of
experience, intuition of the specialist and his creative thinking. Heuristic
methods are divided into expert and psychological.

Expert methods are a set of logical and mathematical techniques and
research procedures, as a result of which experts receive the information

15

necessary to make informed rational management decisions. Psychological
methods – a set of rules and procedures that provide solutions to problems and
solve creative problems.

In addition, all heuristic methods are divided into two groups – methods
of undirected search and directional search. The group of methods of undirected
search includes methods: brainstorming, expert assessments, associations and
analogies, control questions, collective notebook, business games and situations,
cyber meetings, etc.

The morphological method, algorithm for solving inventive problems, etc.
belong to the group of directed search.

Brainstorming method.
The method of brainstorming is the most common method of generating

new ideas as a result of creative collaboration of a group of specialists.
There are certain rules for organizing and conducting brainstorming:

- the definition of the head of the group goal in the form of a problem or
task that needs to be solved (increase the profitability of production of a
particular product or turn the production of a product from unprofitable to
profitable). The task of the leader is to activate the creative thinking of the group
members in order to produce as many ideas, proposals for the task;

- strict adherence to the distribution of time as a whole and by stages:
 Stage I – the nomination of new ideas,
 Stage II – discussion and evaluation of these ideas. In this way it is

differentiated in the time of nomination and discussion of ideas. The meeting
may not last more than an hour and a half. If necessary, you can hold several
meetings on one issue;

- compliance with the established procedure for organizing the creative
process. Yes, at the first stage only ideas are put forward, even, at first sight,
inappropriate, unrealized, fantastic.

Their quantity is preferred to quality. It is forbidden to criticize ideas so as
not to disrupt the creative process. At the II stage there is an active discussion of
the put forward offers with the indication of their advantages and lacks. It is
useful to combine several ideas. The conclusion of this discussion is the choice
of the best of the proposed options.

Experience shows that due to the separation of time generation and
discussion of ideas, the number of new ideas is twice as large as when using
other traditional methods.

For the most part, the process of brainstorming goes through 5 successive
stages: problem identification, generation of ideas, analysis of ideas, search for
opportunities for their implementation and completion.

1. Defining the problem. It is expedient to allocate this stage in that case
when from the very beginning the problem which needs the decision is not
outlined. In this case (especially with a small number of participants in the
game), you can study the importance of problems in the rating with the help of

16

cards, which are distributed to each participant in the game to identify his
opinion.

2. Generation of ideas is the most important stage of work, because the
quality of the ideas put forward depends on the effectiveness of brainstorming.
To do this, game participants can be divided into groups of 5-6 people in each
and on separate cards to write down new ideas - one idea on each card. It is
necessary to put forward as many ideas as possible and record them. At this
stage, criticism of the ideas put forward is not allowed. The duration of the stage
of generating ideas is 30 minutes. The groups then inform the facilitator of the
number of ideas put forward.

3. Analysis of ideas is an in-depth study, discussion, even critical
consideration of the proposals in order to identify a rational grain in each of
them. Ideas cannot be rejected. At this stage, too, is given 30 minutes.

4. The search for opportunities for implementation is done by evaluating
each idea from two positions – originality and feasibility. 20 minutes are
allocated for this purpose.

5. Completion. At this stage, representatives of all groups make reports on
ideas that are recognized as a result of the analysis are very successful, original,
and which can be really implemented.

Fig. 2.1. The main stages of brainstorming

The method of brainstorming is best used to solve simple, mostly general,

or organizational plan tasks, about which there is enough information, and with
which the participants are familiar.

An example of solving such problems is a problem called "Smoking
time". The fact is that one of the Japanese companies has a problem of reducing
the productivity of turners in the shop due to their frequent distraction during the
work shift for smoking breaks. The management could not make an acceptable

17

decision because it was not possible to place a controller or a video camera near
each machine.

 Therefore, a brainstorming was carried out with the involvement of
managers of different levels of management. In its process, a simple solution
was found that did not require large financial or material investments, and took
into account the peculiarities of human psychology. So, experts came to the
decision to transfer a place for smoking ("smoking room") from a distant room
to the center of shop. It was installed on a high pedestal and made of glass. As a
result, unproductive losses of working time were sharply reduced and the
productivity of turners was increased.

Other heuristic methods

The method of control questions is designed to activate the creative
process to solve the problem by providing answers to questions according to a
pre-compiled list. This contributes to a comprehensive consideration of the
problem and the search for new non-traditional approaches to its solution. The
universality of this method is that the analyst can ask questions to himself and
look for answers to them, as well as in the process of collective discussion, in
particular during brainstorming, conference of ideas and so on.

The method of morphological analysis has several varieties and is
designed to generate new unbiased ideas about the possibility and ways to solve
the problem. Using this method, the analytical task is described and analyzed as
a set of all possible morphological (ie structural) connections and relationships
between the constituent elements.

2.4. Methods for finding solutions to an intellectual problem in the

case of reducing problems to a set of problems

There are direct, reverse and bidirectional search methods. Direct search

starts from the initial state and is usually used when the target state is specified
implicitly. The inverse search starts from the target state and is used when the
initial state is set implicitly and the target state is explicit. Bidirectional search
requires a satisfactory solution to two problems: changing the direction of the
search and optimizing the "meeting point". One of the criteria for solving the
first problem is to compare the "width" of the search in both directions, the
direction that narrows the search is selected. The second problem is caused by
the fact that the forward and reverse paths can diverge and the longer the search,
the more likely it is.

Task planning. This method leads to good results because often the
solution of problems has a hierarchical structure. However, it is not necessary to
require that the main task and all its subtasks be solved by the same methods.
Reduction is useful for presenting the global aspects of the task, and in solving
more specific tasks, the preferred method of planning by state. The method of

18

planning by states can be considered as a special case of the method of planning
by means of reductions, because each application of the operator in the space of
states means reduction of the initial problem to two simpler ones, one of which
is elementary. In the general case, the reduction of the original problem is not
reduced to the formation of such two subtasks, at least one of which was
elementary.

The search for planning in the task space is to sequentially reduce the
original task to easier and simpler until only elementary tasks are obtained. A
partially ordered set of such tasks will be the solution of the original problem. It
is convenient to divide the task into alternative sets of subtasks in the form of an
AND/OR graph. In such a graph, each vertex, except the final one, has either
conjunctively connected child vertices (I-vertex) or disjunctively connected
(OR-vertex).

In a separate case, in the absence of I-vertices, there is a graph of state
space. The final vertices are either final (they correspond to elementary tasks) or
dead ends. The initial vertex (the root of the I/OR graph) represents the original
task. The purpose of searching on an I/OR graph is to show that the initial vertex
is debugged. Solvable are the final vertices (I-vertices), in which all child
vertices are solved, and OR vertices, in which at least one child vertex can be
fixed. The permitting graph consists of resolved vertices and indicates the
method of solving the initial vertex. The presence of dead-end vertices leads to
unsolvable vertices. Insoluble are dead-end vertices, I-vertices in which at least
one child vertex is unsolvable, and OR vertices in which each child vertex is
unsolvable.

Cheng and Slagel algorithm. Based on the transformation of an arbitrary
I/OR-graph into a special OR-graph, each OR-branch of which has I-vertices
only at the end. The transformation uses the representation of an arbitrary
AND/OR graph as an arbitrary formula of the logic of statements with the
subsequent transformation of this arbitrary formula into a disjunctive normal
form. Such a transformation allows us to further use the Hart, Nilsson and
Raphael algorithm.

The search for planning in the task space is to sequentially reduce the
original task to easier and simpler until only elementary tasks are obtained. A
partially ordered set of such tasks will be the solution of the original problem. It
is convenient to divide the task into alternative sets of subtasks in the form of an
AND/OR graph. In such a graph, each vertex, except the final one, has either
conjunctively connected child vertices (I-vertex) or disjunctively connected
(OR-vertex).

Method of key operators. Suppose that the problem <A, B> is given and it
is known that the operator f must be included in the solution of this problem.
Such an operator is called a key. Suppose that the state C is required for the
application of f, and the result of its application is f (c). Then the I-vertex
generates three child vertices:, < C, f (c} > i, of which the mean is an elementary

19

problem. Key operators are also selected for problems C > and B >, and the
specified reduction procedure is repeated as long as it is As a result, the initial
problem B> is divided into an ordered set of subtasks, each of which is solved
by the method of planning in the state space.

Alternatives to the choice of key operators are possible, so that in the
general case there will be an AND/OR graph. In most tasks it is possible not to
select the key operator, but only to specify the set that contains it. In this case,
for the problem < A, B > the difference between A and B is calculated, which
corresponds to the operator, which eliminates this difference. The latter is key.

Method of planning a common problem solver (PCP). PCP was the first
most famous model of the planner. It was used to solve problems of integral
calculus, inference, grammar, etc. PCP combines two basic principles of search:
analysis of goals and means and recursive problem solving. In each search cycle,
the ARI solves three types of standard problems in a rigid sequence: convert
object A to object B, reduce the difference D between A and B, apply the
operator f to object A. Solving the first problem determines the difference D, the
second – suitable operator f, the third – the required condition for the use of C.

If C does not differ from A, then the operator f is used, otherwise C is
represented as another goal and the cycle is repeated, starting with the task of
"convert A to C". In general, the PCP strategy performs a reverse search – from
a given goal B to the necessary means of achieving it C, using the reduction of
the original task to tasks and < C, B >.

Note that the PCP tacitly assumes the independence of differences from
each other, hence the guarantee that the reduction of some differences will not
lead to an increase in others.

Planning with logical inference. Such planning involves: a description of
states in the form of correctly constructed formulas of (ССF) some logical
calculus, a description of operators in the form of either ССF, or the rules of
translation of some PPF into others. Representation of operators in the form of
CCF allows to create deductive methods of planning, representation of operators
in the form of translation rules – methods of planning with elements of
deductive inference.

Deductive method of planning the QA3 systemd id not live up to
expectations, which he hoped for mainly due to unsatisfactory presentation of
tasks. An attempt to rectify the situation led to the creation of a question-and-
answer QA3 system. The system is designed for any subject area and is able to
answer the question by logical inference: is it possible to achieve state B with
A? The principle of resolutions is used as a method of automatic output. To
guide the logical conclusion, QA3 uses various strategies, mainly syntactic in
nature, taking into account the peculiarities of the formalism of the principle of
resolutions. Operation of QA3 has shown that the output in such a system is
slow, detailed, which is not typical of human reasoning.

20

STRIPS system product method. In this method, the operator represents
the product P, A => B, where P, A and B-sets of CCF calculations of first-order
predicates, P expresses the conditions of application of the product core A => B,
where B contains a list of added CCF and a list of excluded CCF, that is
postum. The method repeats the PCP method with the difference that the
standard tasks of determining the differences and the application of the
respective operators are solved on the basis of the principle of resolutions. The
appropriate operator is selected in the same way as in the PCP, based on the
principle of "analysis of means and objectives". The existence of a combined
method of planning allowed to limit the process of logical inference to the
description of the state of space, and the process of generating new such
descriptions to leave the heuristic "from goal to means to achieve it."

Product method using macro operators. Macro-operators are generalized
solutions to problems obtained by the STRIPS method. The use of macro
operators allows to reduce the search for a solution, but there is a problem of
simplification of the applied macro operator, the essence of which is to select a
given difference of its required part and exclude from the latter unnecessary
operators.

Method of hierarchical system of ABSTRIPS solver products. In this
method, the search space is broken down at the hierarchy level by detailing the
products used in the STRIPS method. To do this, each letter of the CCF, which
is included in the set P of the conditions of use of products, is assigned a weight
j, j = 0, k, and at the i-th level of planning, carried out by the STRIPS system,
only letters of weight j are taken into account. Thus, at the k-th level of products
are described in the least detail, at zero-the most detailed as in the method of the
STRIPS system. Such a partition allows for j-th level planning to use the (j +1) -
th solution as the skeleton of the j-th solution, which increases the search
efficiency as a whole.

Improved method of planning Newell and Simon. The method is based on
the following idea of further improvement of the PCP method: the problem is
solved first in a simplified (by ranking differences) planning area, and then an
attempt is made to clarify the solution to a more detailed, original problem area.

2.5. List of control questions on the topic № 2

1. Name the classes of intellectual problems.
2. Actions in solving intellectual problems.
3. Disadvantages of intellectual tasks.
4. Properties of intellectual problems.
5. What is intellectual activity.
6. In what form can we represent the space of states.
7. What methods do you know of finding a way.
8. The idea of the blind path method.

21

9. Types of blind search.
10. Describe the method of branches and boundaries.
11. What is the algorithm for the shortest paths of Moore.
12. What is the Dijkstra algorithm used for?
13. When the Dora and Mickey algorithm is used.
14. What is associated with heuristics.
15. What are the heuristic methods based on.
16. Rules for organizing and conducting the method of brainstorming.
17. Stages of the brainstorming process.
18. Describe the stage of brainstorming to determine the problem.
19. Describe the stage of brainstorming generation of ideas.
20. Describe the stage of brainstorming analysis of ideas.
21. Describe the stage of brainstorming the search for opportunities.
22. Describe the stage of brainstorming to determine completion.
23. For which tasks it is better to use the method of brainstorming.
24. What heuristic methods do you know?
25. What methods do you know for finding solutions to an intellectual

problem?

3. Representation of knowledge in artificial intelligence system

3.1. Knowledge and models of knowledge representation in artificial

intelligence systems

Knowledge – a set of data about the world, including information about
the properties of objects, patterns of processes and phenomena, as well as the
rules of using this information for decision making. The rules of use include a
system of causation. The main difference between knowledge and data is their
activity, ie the emergence of new facts in the database or the establishment of
new connections can be a source of change in decision-making.

As a separate area of research, knowledge representation has been
developing since the mid-1960s.

Knowledge is a set of facts, patterns, attitudes and heuristic rules that
reflect the level of awareness of the problems of a particular subject area.

Knowledge can be:
- declarative;
- procedural.

Declarative knowledge contains only an idea of the structure of certain
concepts. This knowledge is close to the data, the facts. For example: a higher
education institution is a set of faculties, and each faculty in turn is a set of
departments.

Procedural knowledge has an active nature. They determine the idea of
the means and ways of obtaining new knowledge, testing knowledge. These are

22

algorithms of various kinds. For example: the method of brainstorming to find
new ideas.

Types of knowledge:
- deep knowledge – the result of generalization of primary concepts into

abstract structures;
- soft knowledge – allow multiple vague solutions (for example, making

recommendations); a set of deep and soft knowledge makes it possible to create
powerful knowledge bases;

- superficial knowledge – a set of empirical associations and relationships
between the concepts of the subject area for standard situations;

- conceptual knowledge – express the properties of objects, processes and
situations through the concepts (basic elements) of the subject area. The
description of each concept includes a description of its components, an
indication of the relationship with other components, the relationship between
the concepts. Conceptual knowledge is rigid. Used in solving analysis problems;

- expert knowledge – the knowledge of specialists in the field, they
accumulate experience. This type of knowledge plays the most important role in
poorly structured subject areas. They are soft and superficial. The joint use of
conceptual and expert knowledge allows to combine logical and associative
judgments, to solve the most difficult problems at low computational costs;

- syntactic knowledge – characterize the syntactic structure of the object,
which does not depend on the content of the concepts used;

- semantic knowledge – contain information related to the meaning of the
analyzed objects;

- pragmatic knowledge – describe objects in relation to the goals of the
tasks.

Forms of existence of knowledge:
- in the memory of a person (expert);
- materialized (canonized) – textbooks, monographs, etc.;
- semi-formalized structured model (field of knowledge);
- formalized knowledge of the language of presentation.

Models of knowledge representation

The problem of knowledge representation is central to knowledge-based
systems, and in particular to expert systems, because its successful solution
depends on the implementation of their main function – the acquisition of new
knowledge. It is on this basis that the structure and form of organization of
models and methods of knowledge representation are determined, which have a
decisive influence on the efficiency of the system, perception of external
information, dialogue with the user. As a separate area of research, the
presentation of knowledge has been developing since the mid-1960s.

Basic (classical) models of knowledge representation:

23

- logical;
- algorithmic;
- frame;
- production rules;
- network models;
The basis of logical models of knowledge is the concept of a formal

system, an example of which is the calculus of predicates.
In contrast to logical, heuristic models of knowledge use a set of different

tools that convey the specific features of the model. Due to this, heuristic models
are superior to logical ones in terms of the possibilities of adequate reflection of
the subject area and in terms of the efficiency of the rules of logical inference.
Heuristic models used in expert systems include production, network and frame
systems.

To present knowledge in a computer means to define some initial objects,
rules of formation on their basis of new objects and as a result to receive the
description of knowledge. The formal way of description is a model of
knowledge representation.

Data values act as input indivisible objects. The relationship between the
data determines the rules of formation of new objects. Performing separate
procedures on the relationship between data, structure data and form knowledge.
There are a number of models of knowledge representation: logical, algorithmic,
frame, semantic, productive. Consider the main features of each of the models.

Logical models of knowledge representation use the statements of some
formal system to describe the problem to be solved. The purpose of the problem
is also formulated in the form of a statement, the justice of which must be
established or refuted, based on the axioms and rules of derivation of the formal
system.

According to the rules established in the formal system, the final
statement – the theorem derived from the initial system of statements (axioms,
parcels), is assigned a true value, if each parcel or axiom is also assigned a true
value.

The set of basic elements of logical models of knowledge representation
are logical connections, quantifiers, constants, variables, functional and
predicate symbols; syntactic rules. The latter define the concept: term, atom,
correctly constructed formula. Derivation rules make it possible to draw some
conclusions from existing axioms.

Constants are usually used to denote objects in a subject area, and
predicate names are chosen to denote object classes, properties, and
relationships between objects. Formulas containing quantifiers and variables
describe the general patterns of the subject area.

Logical model of knowledge representation

24

The knowledge needed to solve, and the problem itself is described by
certain statements in logical language. Knowledge is a set of axioms, and the
problem to be solved is a theorem that requires proof. The process of proving
the theorem is a logical model of knowledge representation. The description of
the model is based on constructive logic. Let's set a logical model as a set:

where T is the set of basic elements, P is the set of rules, A is the set of

real expressions (axioms), F is the rule of inference.
Consider in more detail what are the basic elements of T:
Т = Т1 U Т2 U Т3 UТ4 UТ5,
where T1 are the names of tasks and subtasks, T1 = {I1, I2,,}; T2 –

determines the structure of their relationship, {ǽ, υ}; T3 are symbols of
reduction of tasks to subtasks, {→}; T4 – auxiliary characters, {(,)}; T5 - a
symbol of truth and falsity of the results of the decision, {t, f}.

Based on the symbols of the alphabet, the formulas of the logical model
are built, ie a set of rules P, for example: The name of the problem and its
description are given;

 Denote the description of problems A, B. Then, if A ǽ B, it means that it
is necessary to solve the problem with description A and description B.

2. If A υ B, then this is a description of the problem for which you should
solve either a problem with a description of A or a problem with a description of
B.

If the description of the problem is its name, then the task is called
elementary. If the problem with the name And is reduced to the problem with
the description And it is possible to write And → A. Thus elements with the
description And are the description of the subtasks which are included in the
problem with the name And.

 3. Additional symbols 1, Ø mean the description of problems with the
results of their solution. The symbol 1 means A = t; the symbol Ø means A = f.

Finding a solution to a problem based on a logical model of knowledge
representation is based on the use of a number of axioms, for example:

A υ B = B υ A. The meaning of the axiom is that the solution of the
problem of two subtasks A and B is determined. Accordingly, the problem will
be solved if one of the subtasks is solved.

(A υ B) υ C = A υ (B υ C), ie, if there are three subtasks A, B, C, the
original problem will be solved if one of the subtasks is solved, and any two
subtasks can be combined into one subtask.

(Аæ В) æ С = А æ (В æ С). With such an axiom notation, it is assumed
that the initial problem includes three subtasks A, B, C. The solution of the
problem can be obtained if subtasks A, B are solved. Since there is no symbolic
sign between A and B, subtasks can be solved in any sequence.

25

A total of 10 axioms are used to build a logical model. The logical model
corresponds to the graphical mappings in the form of a reduction graph and a
graph of spatial states.

For the reduction graph, the vertices are the names of the subtasks, and the
arcs indicate the relationship between them. The graph is built from top to
bottom, in its final vertices are elementary subtasks that can be solved using a
computer. The search for a solution to the original problem is displayed by a
sequence of vertices of the graph.

In the state space graph, the vertices are the processes of solving
elementary subtasks. This graph must indicate the path from the root vertex to
one of the end, ie set the sequence of vertices.

A total of 10 axioms are used to build a logical model. The logical model
corresponds to the graphical mappings in the form of a reduction graph and a
graph of spatial states.

Algorithmic model of knowledge representation
Algol-like programming languages are often used in the process of

formalizing knowledge. The formal system gives a description of the solution of
the problem in the form of a calculation program. The basis of the formal system
are: the alphabet of the language used, the rules of formation of expressions
from the elements of the alphabet, axioms and inference rules.

The alphabet is determined by the set T = T1 UT2 UT3, where: T1 = {A1,
A2, ... An} – names of subtasks. Sequence A is a description of the original
problem; T2 = {;, case, of, while, do} – includes words that allow you to build
syntactic constructions to describe the sequence of the solution (for example,
case A of A1, A2, ... An - means that the description of the original problem A,
to solve which is enough to solve one of the subtasks); T3 = {begin, end} –
auxiliary values.

The algorithmic model can also be represented by a reduction graph,
where the original problem is located in the root vertex, subtasks in the
intermediate vertices, and elementary subtasks in the final vertices. Arcs reflect
programming operations.

Semantic model of knowledge representation
This model allows you to operate with concepts expressed in natural

language. An example of the implementation of such a model are expert
systems. To build the model using the apparatus of semantic networks,
presented in the form of a graph:

G = {Y1, Y2, ... Yn; β1, β2, ... βm}, where Y are the nodes (vertices) of the
graph. They reflect some entities - objects, events, processes, phenomena, etc .;
β – arcs of the graph, which denote the relationship between entities, given on
the set of vertices.

26

The vertices reflect the essences of different degrees of commonality.
Their ordering is based on the types of relationships.

The subject area is displayed as a set of entities and the relationship
between them. If the fundamental concepts of relations and objects of the
subject area are adequately formulated (ie there is a comprehensive conceptual
knowledge), then the semantic model works very successfully.

Frame model of knowledge representation

This model is based on a person's perception of the world around him, on
human psychology. When a person finds himself in a situation, he identifies it
with some typical structure present in his memory. This structure is a frame – a
declarative representation of a typical situation, supplemented by procedural
information about the possibilities and ways to use it.

The frame is represented by a network. The upper levels of the network
reflect the essence that is true for a typical situation (frame design). The lower
levels end in empty structures – slots. Filling, definition of slots occurs when
calling a frame in a specific situation in the subject area. The frame includes a
set of slots:

F = [(C1, d1), (C2, d2), ... (Cn, dn)], where F is the name of the frame; C
– slot names; d is the value of the slots.

Slots are filled as knowledge of the subject area is obtained.

Production model

 The production model contains a set of rules (products) in the form of:
1. IF the condition is an action
2. IF the cause is the consequence
3. IF the situation is a solution.
The essence of the model is that if certain rules of the condition are met,

then some action must be taken. Production models can be implemented
procedurally and declaratively. Procedural systems must have: a database, a set
of production rules and an interpreter (it determines the sequence of activation
of products). The database is a variable part of the model, and the rules and
interpreter are constant. Only facts (knowledge) can be added and changed.

Production models are used in those subject areas where there is no clear
logic and problems are solved on the basis of independent rules (heuristics).
Product rules carry information about the sequence of purposeful actions. They
reflect well the pragmatic component of knowledge and are used for small tasks.

Product systems

 Under the production system is understood a certain method of
organizing the computational process, in which the program of transformation of
some information structure is set in the form of a set of rules-products.

27

Each rule is a combination of elements: the condition of suitability –
action. The suitability condition specifies some requirements for the current
state of the information structure, and the action contains a description of the
operations to be performed if these requirements are met.

Production rules are the easiest way to present knowledge. It is based on
the presentation of knowledge in the form of rules structured in accordance with
the scheme "if – then". Part of the rule "if" is called a parcel (or condition of
suitability), and part "then" – a conclusion.

The rule is written as follows: If a1, a2,. . . , аn то b.
For example: If (1) y is the father of x (2) z is the brother of y Then z is

the uncle of x
If there are no parcels, then knowledge consists only of a conclusion and

is called facts.
In production systems, two main methods of inference are used: forward

and reverse.
In direct derivation, the rules are studied one after another in a certain

sequence. Based on the initial conditions (data) entered by the user, for each rule
the truth or falsity of its condition of suitability is estimated. If the condition is
true, the rule is activated, otherwise – no. The derivation procedure is iterative
and may require several runs through the whole set of rules until a certain value
of the target variable is determined.

The inverse derivation assumes the truth of the consequence (action) of a
rule, after which it is necessary, moving a series of rules in the opposite
direction, to prove that there are grounds for such a statement.

Advantages of production systems:
- universality of the programming method, which allows the creation of

various application systems that differ in the ways of presenting rules and data
structures;

- natural modularity of knowledge organization, when each product is a
complete piece of knowledge about the subject area, and the set of products is
naturally structured into subsets belonging to certain components of knowledge;

- independence of each product from the content of other products
provides ease of formulation and modification;

- declarativeness of the production system, which provides a description
of the subject area, rather than the relevant processing procedures.

Network models present knowledge in the form of a network, the vertices
of which correspond to concepts (objects, events, processes, phenomena), and
arcs – the relationships that exist between concepts.

The classification of network models is based on the conditions of the
description of vertices and connections. If the vertices do not have their own
internal structure, then the corresponding networks are called simple networks.
If the vertices of the network themselves have some structure in the form of a
network, then such networks are called networks of hierarchical type. The

28

relationship between the vertices can be the same; in this case, the networks are
called homogeneous. If these relations have different meanings, then the
network is called heterogeneous.

Depending on the nature of the relationship attributed to the arcs of the
network, there are the following types of networks:

- functional networks in which two arc-connected vertices correspond:
one to a function, the other to the argument of that function.

- scenarios – homogeneous networks that use a single type of relationship
– a relationship of non-strict order. Most often, this relationship determines all
possible sequences of events.

- semantic networks that use different types of relationships, and vertices
can have different interpretations.

The main structural units from which the semantic network is built are
frames.

Compared to other models, semantic networks have advantages:
- more efficient information retrieval, as associations between network

objects determine access paths that run through the knowledge base;
- the ability to explicitly reflect the structures inherent in the knowledge of

the subject area, for example, the relations "particle-whole", "element-set",
"class-subclass", etc.

Frames. The frame is a system-structural description of the subject area
(events, phenomena, situations, states, etc.), which consists of empty aspect
(role) positions (slots) that correspond to the substantive features of the subject
area and after filling with specific data transform the frame on the carrier of
specific knowledge.

Translated from English, "frame" means "frame", "frame".
Different types of information can be associated with each frame. One

part indicates how to use this frame, the other – what the consequences of its
implementation may be, the third – what to do if these expectations are not
confirmed.

3.2. Production models of knowledge representation

Production model of knowledge – a model based on rules, allows you to

present knowledge in the form of proposals such as "If (condition), then
(action)".

29

Fig. 3.1 Semantic network

Fig. 3.2 A semantic network example of tourism-related terms

Production model – fragments of the Semantic Network, based on the

temporal relationship between the states of objects.
Semantic network, ordered by the relations "whole - part", "genus –

species"
Semantic network – an information model of the subject area, which has

the form of an oriented graph, the vertices of which correspond to the objects of
the subject area, and arcs (edges) define the relationship between them. Objects
can be concepts, events, properties, processes.

30

 Thus, the semantic network is one of the ways to present knowledge. The
name combines terms from two sciences: semantics in linguistics studies the
meaning of language units, and the network in mathematics is a kind of graph –
a set of vertices connected by arcs (edges), which are assigned a number. In the
semantic network, the role of vertices is performed by the concept of knowledge
base, and arcs (and directed) define the relationship between them. Thus, the
semantic network reflects the semantics of the subject area in the form of
concepts and relationships.

The production model has the disadvantage that with the accumulation of
a large number (about several hundred) products, they begin to contradict each
other. In the General case, the production model can be represented as follows:

H = <I, C1, C2, ..., Cn, Q> ,

where I – a set of information elements stored in nodes networks, C1, C2, ..., Cn

– types of connections between information elements, a mapping that matches
multiple types connections and set information elements of the network.

Modifications of the production model

The production model is often supplemented by a certain order, which is
introduced on a set of products, which simplifies the mechanism of logical
inference. The order can be expressed in the fact that a separate next in order
products can be used only after attempts to use previous products.
Approximately similar impact on the production model can have the use of
product priorities, which means that in the first place should be used products
that have the highest priority.

The growing inconsistency of the production model can be limited by the
introduction of exceptions and returns mechanisms. The exception mechanism
means that special exclusion rules are introduced. They are distinguished by
great specificity in comparison with the generalized rules. With an exception,
the basic rule does not apply.

 The mechanism of returns means that the logical conclusion can continue
in the event that at some stage the conclusion led to a contradiction. You just
need to abandon one of the previously accepted statements and return to the
previous state.

Contradictions in knowledge bases in the Prolog language are detected
automatically through the use of automatic proof of theorems with built-in
Prolog search mechanisms with returns, organizing the search for information in
knowledge bases and output of found information as information search results.

3.3. Solution management in productive systems

The production model attracts developers with its clarity, high modularity,
ease of making additions and simplicity of the mechanism of logical inference.

31

Here are the strengths and weaknesses of product systems. Strengths of product
systems:

- modularity;
- uniformity of structure (the main components of the production system

can be used to build intelligent systems with different problem orientation);
- naturalness (conclusion of imprisonment in the production system in

many ways similar to the process of reasoning of the expert);
- flexibility in the generic hierarchy of concepts, which is supported only

as a link between rules (a change in a rule leads to a change in the hierarchy);
- ease of creating and understanding individual rules;
- ease of replenishment and modification;
- simplicity of the mechanism of logical conclusion.
Weaknesses of product systems:
- the derivation process is less efficient than in other systems, as most of

the derivation time is spent on unproductive validation of the rules;
- it is difficult to imagine a hierarchy of concepts;
- ambiguity of mutual relations of rules;
- the difficulty of assessing the holistic image of knowledge;
- in contrast to the human structure of knowledge, lack of flexibility in

the logical conclusion.
In the production representation, the area of knowledge is represented by

a set of production rules If-Then, and the data are represented by a set of facts
about the current situation.

The co-output mechanism matches each rule that is stored in the database
with the facts contained in the database. When part of the rule If (condition)
approaches the fact, the rule works and its part Then (action) is executed. A rule
that works can change a set of facts by adding a new fact.

Mapping parts If rules with facts creates an output chain. The output chain
shows how the EU applies the rules to obtain an opinion. To illustrate the output
method based on a chain, consider a simple example.

Suppose the database initially includes facts A, B, C, D and E, and the
database contains only 3 rules;

Rule 1.
Rule 2.
Rule 3.

The output circuit in Fig. 3.4. shows how the EU applies the rules to

deduce the fact of Z.

32

Fig. 3.3. Example output circuit

First, Rule 3 is triggered to derive a new fact X from a given fact A. Then

Rule 2 is executed to derive a fact B from facts B and E, as well as an already
known fact X. And finally Rule 1 applies the known fact D and the early fact. In
to calculate the fact Z.

The EC can display its output chain to explain how a separate solution
was reached; this is a major part of her explanatory abilities. The output
mechanism must decide when the rules should work. There are two basic ways
in which rules can be enforced. One is called a straight chain (conditionally –
output), and the other reverse chain (target checks displayed)

This example uses a direct output chain. Production systems, in which the
antecedent part (conditions) is first analyzed, have a so-called conditionally
derived architecture. An example of an expert system of such an architecture is
METADENDRAL

An alternative type of architecture, which is often used in expert systems,
are purposeful production systems.

For example, a rule of the form A & B & C → D can be interpreted as
"The logical conjunction A, B and C causes D" or "To prove D, you must set A,
B, C".

In the latter case, the goal must be achieved by deductive inference. To do
this, the consequential rules are investigated to find a rule that would achieve the
goal. When such a rule is found, all its conditions are checked for truth. If the
conditions are true, the product is activated. Otherwise, the search for suitable
products continues.

Consider a simplified example of a production system with a consequent –
derived architecture. The letters here denote the elements of the database and
they are considered true if they are contained in it.

DB: AF
Rule 1:
Rule 2:

33

Rule 3:
Rule 4:
Rule 5:
Rule 6:
Rule 7:

Suppose the goal is to prove the truth of N. First of all, it is checked

whether H is in the database? Since this is not the case, the system tries to derive
the truth of H using rules that have H on the right.

 This is rule 7. Now the system tries to derive the truth of G, as the truth
of the latter entails the truth of N. Again, the database is checked: the database
does not have G, therefore, an overview of the rules containing G in the right
part. There are several such rules (two or three). As a strategy for "conflict
resolution", we will assume that the rules are ordered by priority, and the rule
with the lowest number corresponds to a higher priority.

In this case, rule 2 is chosen, so the goal now is to derive the truth of D
and F. To do this, it is sufficient to show that A is true (since it is in the
database), B-true (according to rule 5), C-true with rule 4). Since the truth of D
and F is proved, from truth 2 follows the truth of G, and from the truth of G
follows the truth of H (rule 7).

Thus the goal is achieved. The elements, the truth of which is proved, are
added to the database. In this case, these are the elements H, G, D S. V.

3.4. List of control questions on the topic № 3

1. What is knowledge.
2. The main difference between knowledge and data.
3. Types of knowledge.
4. What is declarative knowledge.
5. What is procedural knowledge.
6. Classical models of knowledge representation.
7. What is the basis of logical models.
8. What use heuristic models.
9. Using logical models.
10. What is meant by the production system.
11. Advantages of production systems.
12. How to provide knowledge of network models.
13. Classification of network models.
14. Types of networks.
15. Describe functional networks.
16. Describe the scenarios.
17. Describe semantic networks.
18. Advantages of semantic networks.

34

19. What are frames.
20. What is the mechanism of exceptions.
21. What is the mechanism of returns.
22. List the strengths and weaknesses of products.

4. Knowledge-based problem solvers

4.1. Semantic grids: basic concepts, types, methods of description and

logical derivation of semantic grids

Semantics is the science of making connections between symbols and the
objects they denote. That is, it is a science that determines the meaning of signs.

A semantic grid is an oriented graph whose vertices are concepts, and arcs
are a relationship between them. Concepts represent abstract or concrete objects,
and relationships are connections such as "it", "belongs", "has a part".

For semantic grids, 3 types of relationships are required:
- class – element of the class (flower - rose);
- property – value (color - red);
- class element – example (rose - baccarat).

Classification of semantic grids

By type of relationship:
- homogeneous. With one type of relationship;
- heterogeneous. With different types of relationships.
By the number of relationships:
- binary. Relationship between only 2 objects;
- N-arny. Relationships connect more objects.
Types of relationships;
- relationships such as "whole - part" (class - subclass, set - element);
- functional connections ("follows", "acts", "produces");
- quantitative relationships ("more", "less");
- spatial relationships ("far from", "close to", "for", "under", "above");
- time connections ("before", "later", "during");
- attributive relationships ("has a property", "matters");
- logical connections ("AND", "OR", "NO");
- linguistic connections.
The search for a solution is reduced to finding a fragment of the grid

(subnet), where the answer to the query from the knowledge base.

35

Fig. 4.1. An example of a semantic grid

The semantic grid model was proposed by the American psychologist

Culian. It reflects well the idea of the organization of long-term human memory.
The disadvantage is the complexity of the organization of the search and
retrieval procedure. There are special languages for implementing semantic
grids, such as NET. Also, samples of expert systems are known:
PROSPECTOR, CASNET, TORUS.

4.2. Frames: basic concepts, frame structure, frame models

In 1975, Marvin Minsky proposed the hypothesis that human knowledge
is grouped into modules – frames. He developed a model to denote the structure
of knowledge, which is designed for the perception of spatial scenes. A frame
here is a data structure that is designed to describe typical situations or concepts.

Definition of the frame for Minsk. A frame is the minimum possible
description of a certain entity, such that further reduction of this description
leads to the loss of this entity.

For example, a frame "room" is a room with walls, floor, ceiling, window
and door. If you remove the "window" from this description, it will no longer be
a "room", but a "pantry" and so on. The frame of any concept can be formed by
combining all the facts related to this concept.

Formally, the concept within the frame model is described as follows:
Frame name
Attribute 1, value 1
Attribute 2, value 2
Attribute N, value N

Pit Man

Mercedes The car

Type of transport

Engine

Color

Black

this

this

is

this

Has a part

properties

mean

36

That is, a frame is an aggregate description of all the basic characteristics
of an object. Data structures that are designed to describe individual attributes in
a frame are called slots.

Sample frames describe generalized concepts (classes) of the same type of
objects with the same characteristics. Specific objects are called instances of
frames. The description of frame instances is formed as a result of concretization
of frames, is during filling of slots with concrete values. If certain slots are filled
with specific values when describing a sample frame, they are passed to all
instance frames.

Fig.4.2. Description of frame instances

Frame models are characterized by a hierarchy of concepts and
inheritance of properties. "Student" is derived from "new moon" and "man", so
you can not specify the "last name" and "first name" slots, but only the values
for specific slots.

A slot «this» indicates the frame of the highest level of the hierarchy,
from which the values of the slots are inherited. For example, when asked if a
student loves sports, the answer will be "yes", because it is common to all young
people. Inheritance of properties can be partial, for example, "age" for the
student is not inherited as it is specified explicitly in own frame.

Table 4.1. Structure of the frame
Frame name

Slot name Slot value The method of obtaining
the value

Connection procedure

 The value of the slot can be the name of another frame, then frame

networks are formed.
Ways to get the value in the instance frame:
- Default from the sample frame.

Man

 It is homo– sapiens
He can – think

Last name - Petrenko
Name - Ivan

Student

 This is – a man

Age –18-22 years
Classes - training

this

this
New moon

This is – a man

Age – 16-22 years
Height – 150-190
To love – a sport

37

- Due to inheriting properties from the frame specified in the "it" slot.
- According to the formula specified in the slot.
- Through a connected procedure.
- Explicitly from the dialogue with the user.
- From the database.
The frame model is universal because it provides an opportunity to reflect

the diversity of knowledge about the subject area.
Types of frames:
- Frame-structures are used to denote objects and concepts (university,

school, audience).
- Frame-roles (teacher, student, dean).
- Scenario frames (lecture, exam, diploma defense).
- Frames-situations (revolution, sudden check of presence of students).
The main advantage of the frame model is its flexibility and clarity, which

reflects the conceptual basis of the organization of human memory.
To create frame models use special languages: FRL, KRL. Known expert

systems: ANALYST MODIS, TRISTAN, ALTERID.

4.3. Expert systems: purpose and principles of construction,

generalized architecture, classes of problems that are solved with the help

of expert systems

Purpose and principles of construction

Expert systems are a class of computer programs that offer
recommendations, analyze, classify, advise, and diagnose. They are focused on
solving problems that require examination by a specialist.

 Unlike programs that use procedural analysis, expert systems solve
problems in a narrow subject area (a specific area of expertise) based on logical
reasoning. Such systems can often find solutions to problems that are
unstructured and inaccurate. Through the use of heuristics, they compensate for
the lack of structure, which is useful in situations where insufficient data or time
eliminates the possibility of a full analysis.

The basis of the expert system is a set of knowledge that is structured to
simplify the decision-making process. For artificial intelligence professionals,
the term "knowledge" means the information that a program needs to behave
intellectually. This information takes the form of facts or rules. Facts and rules
are not always true or false, sometimes there is some degree of inaccuracy in the

38

validity of a fact or the accuracy of a rule. If doubt is expressed clearly, it is
called the coefficient of confidence.

Generalized architecture

The basis of expert systems is knowledge.
 Knowledge is a holistic and systematized set of concepts about the laws

of nature, society and thinking, accumulated by mankind in the process of active
transformational activity and aimed at further knowledge and change of the
objective world.

Knowledge from the subject area is called the knowledge base. The
knowledge base of the expert system contains facts (data) and rules (ways of
presenting knowledge). The conclusion mechanism contains: an interpreter,
which determines how to apply the rules to derive new knowledge, and
dispatchers, who establish the procedure for applying these rules.

The expert system contains three types of knowledge:

- structured knowledge about the subject area – after this knowledge is
identified, it does not change;

- structured dynamic knowledge – variable knowledge from the subject
area, which is updated as new information is discovered;

- work knowledge used to solve a specific problem or conduct a
consultation.

All this knowledge is stored in the knowledge base. To build it, you need
to conduct a survey of specialists who are experts in a particular subject area,
and then systematize, organize and index the information for ease of use.

The composition of the expert system

The fully designed EC includes 4 important components:
- knowledge base;
- conclusion machine;
- command interpreter;
- interface (explanation system).
The core of the EU is the BZ and the conclusion procedure. They should

be considered together, because knowledge on the basis of which conclusions
cannot be drawn does not make sense.

Knowledge base

The knowledge base is a set of all knowledge contained in the expert
system.

Usually databases are described at the logical and physical levels:
- logical level of data: conceptual scheme, which in a structured form

describes the subject area and its quantitative characteristics in the form of data;

39

- physical layer of data: a diagram showing the addresses of data in the
external memory of the computer (file structures with different access).

Conclusion machine

In the ES, there is controversy between proponents of a "direct chain of
reasoning" and a "reverse chain of reasoning" as a strategy for logical reasoning
in general. The first is a chain of reasoning that leads from data to hypotheses,
and the second is an attempt to find data to prove or disprove a particular
hypothesis.

The direct chain often leads to an uncontrolled mode of questions in the
dialogue, and the reverse – to the persistent repetition of questions about the
goal. For this reason, the most successful systems use a combination of both
circuits. But whichever way the procedure works, it will deal with unreliable
data, which is more in line with the real world than previous abstractions,
although the latter are more conveniently squeezed into the rigid framework of
the computer.

Command interpreter

The command interpreter determines how to apply the rules to output new
knowledge, and the dispatchers determine how to apply these rules.

Interface (explanation system)

The specialist uses the interface to enter information and commands into
the expert system and obtain source information from it. Teams contain
parameters that guide the process of knowledge processing. Information is
usually given in the form of values assigned to certain variables.

The technology of expert systems provides an opportunity to receive as
initial information not only decisions, but also necessary explanations.

There are two types of explanations:
- explanations issued on request. The user may at any time request an

explanation of his actions from the expert system;
- explanation of the obtained solution to the problem. After receiving the

decision, the user can request an explanation of how it was obtained. The system
must explain each step of its reasoning that leads to the solution of the problem.
Although the technology of working with an expert system is not simple, the
user interface of these systems is friendly and usually does not cause difficulties
in dialogue.

Classes of problems that are solved with the help of expert systems

ES classification according to the problem to be solved:
- interpretation of data;
- diagnosis;

40

- monitoring;
- design;
- forecasting;
- planning;
- training;
- management;
- decision support.

Classification of ES by real-time connection:

- static EC;
- quasidynamic EC;
- dynamic EC.

ES classification by learning objectives:

- systems in which it is problematic to formulate learning objectives;
- systems in which the purpose of training can be formulated, but it is not

known how to do it;
- systems with known learning goals and strategies.

4.4. Stages of development of expert systems, acquisition of

knowledge

- Stage of problem identification – tasks to be solved are identified,

development goals are identified, experts and user types are defined.
- Stage of knowledge extraction – a meaningful analysis of the problem

area, identifies concepts and their relationships, identifies methods for solving
problems.

- Stage of knowledge structuring – IPs are selected and ways of
presenting all types of knowledge are defined, basic concepts are formalized,
ways of interpretation of knowledge are defined, system work is modeled,
adequacy to system goals of fixed concepts, methods of decisions, means of
representation and manipulation of knowledge is estimated.

- Formalization stage – the expert fills the knowledge base. Due to the
fact that the basis of the EC is knowledge, this stage is the most important and
most time-consuming stage in the development of the EC. The process of
acquiring knowledge is divided into the extraction of knowledge from the
expert, the organization of knowledge that ensures the effective operation of the
system, and the presentation of knowledge in a form understandable to the EC.
The process of acquiring knowledge is carried out by a knowledge engineer
based on an analysis of the activities of an expert to solve real problems.

- Implementation of the EC – is the creation of one or more prototypes of
the EC that solve the problem.

41

- Testing stage – the assessment of the chosen way of presenting
knowledge in the EU as a whole is assessed.

4.5. Scope of expert systems

Expert systems have long been used in diagnostics, in particular in

medical and automotive. ECs are also used in forecasting, planning, monitoring,
management and training. For example, expert systems are already used in
banking in the following areas:

- investment project analysis programs;
- currency, money and stock market analysis programs;
- programs for analyzing the creditworthiness or financial condition of

enterprises and banks.
The process of creating expert systems has changed significantly in recent

years. Due to the appearance of special tools for building expert systems, the
time and considerability of their development has been significantly reduced.

Expert systems are quite young - the first systems of this kind, MYCIN
and DENDRAL, appeared in the United States in the mid-70's. Currently, there
are several thousand industrial ECs in the world, giving advice:

- when operating complex control panels, such as electricity distribution
networks;

- when making medical diagnoses – ARAMIS;
- when troubleshooting electronic devices, diagnostics of failures of

control and measuring equipment - Intelligence Ware;
- for the design of integrated circuits – DAA for traffic management –

AIRPLAN;
- for forecasting hostilities – ANALYST;
- on the formation of the investment portfolio, assessment of financial

risks – RAD, taxation – RUNE, etc.

4.6. Search and explanation of solutions in expert systems

To find solutions, you need to plan the process of asking questions or
taking tests. The effectiveness of the search depends on the strategy of
processing existing knowledge.

Transparency of the decision is required to explain the decision – the
ability of the system to explain the methodology of decision-making. The
importance of transparency for individual users:

- users of the system need to confirm that in each case the conclusion
made by the program is correct;

- knowledge engineers should be able to verify that the knowledge they
have formed has been applied correctly;

42

- subject matter experts should monitor the system's reasoning to
determine how well the system is working.

4.7. Knowledge engineering

Knowledge engineering is a field of artificial intelligence related to the
development of expert systems and knowledge bases. Studies methods and tools
for obtaining, presenting, structuring and using knowledge.

Knowledge engineering was invented by Feigenbaum, and McCordak
(1983) as: "KE – section (discipline) of engineering, aimed at introducing
knowledge into computer systems to solve complex problems that usually
require the participation of human experience."

Currently, this also involves the construction and maintenance of similar
systems (Kendel, 2007). KE is also closely related to software engineering, and
is used in many information studies, such as artificial intelligence research
including databases, data collection, expert systems, decision support systems,
and geographic information systems.

Example of operation of a system based on KE:
- consideration of the problem;
- query databases for this task;
- entering and structuring the received information;
- creating a database of structured information;
- testing of the received information;
- amendments and evolution of the system.
Being an art rather than a purely engineering task, IZ does not have much

practical application. A subdivision of IZ is metaengineering of knowledge,
which is suitable for the development of artificial intelligence.

Principles of KE

Since the mid-1980s, several principles, methods, and tools have emerged
in IS that have facilitated the process of acquiring and working with knowledge.
Here are some key ones: There are different types of knowledge and you need to
use specific methods and techniques to work with them.

There are different ways to present, use, understand knowledge and work
with them can help rethink and use old knowledge in a new way. IZ uses
methods of structuring knowledge to speed up the process of obtaining and
working with knowledge

There are 2 different points of view on KE
- broadcast – it is traditional, which involves the direct transfer of human

knowledge into the machine;
- model is an alternative view. It involves modeling the problem and ways

to solve it by the system itself.

43

4.8. List of control questions on the topic № 4

1. What is semantics?
2. What is a semantic grid.
3. Mandatory types of semantic grid relationships.
4. Classification of semantic grids.
5. Types of relationships.
6. Give an example of a semantic grid.
7. Disadvantages of the semantic grid.
8. Who proposed the hypothesis of frames.
9. What is a frame?
10. What are sample frames?
11. What are instances of frames.
12. Methods of obtaining value in the instance frame.
13. Types of frames.
14. What are expert systems.
15. Types of knowledge of the expert system.
16. The composition of the expert system.
17. What is a knowledge base.
18. What determines the command interpreter.
19. Classification of expert systems according to the tasks to be solved.
20. Real-time EU classification.
21. EU classification by learning objectives.
22. Stages of development of expert systems.
23. Scope of the EU.
24. Search for EU solutions.
25. What is knowledge engineering.
26. Principles of knowledge engineering.
27. Perspectives on knowledge engineering.

5. Modern trends and approaches to the creation of artificial

intelligence systems

5.1. Modern software and tools for creating artificial intelligence

systems: Visual Prolog, Allegro Common Lips, CLIPS, JESS

Logical programming is a programming paradigm, as well as a section of

discrete mathematics that studies the methods and possibilities of this paradigm,
based on the derivation of new facts from these facts according to given logical
rules. Logic programming is based on the theory of mathematical logic. The
most famous logic programming language is Prolog, which is essentially a

44

universal inference machine that works under the assumption of a closed system
of facts.

The first logical programming language was the Planner language, which
provided the ability to automatically derive the result from the data and set rules
for the search for options (the set of which was called a plan). Planner was used
to reduce the requirements for computing resources (using the backtracking
method) and to provide the ability to derive facts without the active use of the
stack. Then the Prolog language was developed, which did not require a plan to
search for options and was, in this sense, a simplification of the Planner
language.

From the Planner language also came the logical programming languages
QA-4, Popler, Conniver, and QLISP. The programming languages Mercury,
Visual Prolog, Oz and Fril were built from the Prolog language. Based on the
Planner language, several alternative logic programming languages that are not
based on the backtracking method have also been developed, such as Ether (see
Shapiro's review [1989]).

The programming paradigm is the basic principles of programming. The
programming paradigm determines how a programmer views a program. For
example, in object-oriented programming, the programmer considers the
program as a set of interacting objects, while in functional programming the
program can be represented as a sequence of computing functions without states.

Visual Prolog is a logic programming language. The prologue is based on
first-order predicate theory. The name of the programming language is
deciphered as – "Programming in logic".

The main concepts in the Prologue language are facts, inference rules and
queries that allow you to describe the knowledge base, inference procedures and
decision making.

Facts in Prologue are described by logical predicates with specific
meanings. The rules in the Prologue are written in the form of rules of logical
inference with logical conclusions and the list of logical conditions.

A special role in the Prologue interpreter is played by specific queries to
knowledge bases, to which the logical programming system generates answers
"truth" and "lie". For generalized queries with variables as arguments, the Prolog
system outputs specific data to confirm the truth of the generalized information
and output rules.

Facts in knowledge bases in the Prologue language represent specific
information (knowledge). Generalized information and knowledge in the
Prologue language are given by the rules of logical inference (definitions) and
sets of such inference rules (definitions) over specific facts and generalized
information.

The beginning of the history of the language dates back to the 1970s. As a
declarative programming language, Prolog takes as a program a specific
description of a task or knowledge base and draws its own logical conclusions,

45

as well as finding solutions to problems using the mechanism of backtracking
and unification.

Allegro Common Lisp – implementation of the Common Lisp language
(Common Lisp) – a functional programming language designed to standardize
the various versions of the Lisp language that existed before the standard. This
dialect is not an implementation, but instead only a specification of a
programming language.

The Common Lisp programming language implements several paradigms,
including:

- supports imperative, functional and object-oriented programming
paradigms;

- dynamic programming language that accelerates program development
through iterative compilation;

- contains CLOS, an object system that supports multimedia methods and
method combinations;

- can be expanded through standard macro mechanisms.

Data types

Common Lisp data types are objects that are stored in variables, not the
variables themselves (which corresponds to a dynamic typing system). Each
variable can have as value any Lisp object. To improve performance, it is
allowed to declare certain restrictions on possible types of variable values.

The set of all objects is denoted by the symbol t. An empty set of objects
or an empty list is denoted by the nil symbol, which corresponds to the logical
"incorrect". Any value other than nil is considered logical "true".

Numbers: Common Lisp has data types for integers of any size (limited
by the amount of available memory), rational numbers (formed by dividing
integers), floating-point numbers, and complex numbers. Letters:
Representations of both printed letters and special purpose symbols.

Symbols (atoms): named data. Each character has a list of attributes, and
can contain any Lisp object. Can be used as variables or functions. Lists:
sequences represented as linked cons cells. Lists are created recursively, adding
a new element to an existing list creating a new cons. cons is a Lisp object that
has two fields: car can have any value, and cdr pointer to the previous cons.
Arrays: collections of Lisp objects of a certain dimension. Any Lisp objects can
be stored in arrays. There are, to improve efficiency, arrays that can only contain
elements of a certain type. A one-dimensional array with elements of any type is
called a vector, an array of letters string, bits bit-vector.

Hash tables: provide a mechanism for effectively comparing any object
(key) with another object (value). Packages: collections of characters used as
namespaces.

46

File names: match file names in a way that is as independent as possible
from the file system implementation. Threads: Used for I/O operations, and for
reading information from strings.

Random structures: data structures used to store information about the
state of the built-in random number generator. Records: user-defined data
structures. Entries have named components.

Conditions: used as signals to control the operation of the program.
Similar to Exceptions in some programming languages. In addition to these data
types, CLOS defines data types for classes, methods, general methods.

Macros

In Common Lisp, macros are operators that are implemented by code
conversion. The macro is determined by how the code that calls it is converted.

The transformation, also called macro expansion, is performed by the
compiler automatically. As a result, the code generated by the macro becomes
the same part of the code as the user-entered program code.

Typical uses of macros include:
- new execution order management structures (cycles, branches, etc.);
- design of the scope and binding of variables;
- simplification of complex code fragments that are often repeated;
- determination of higher level forms with side effects of compilation

time;
- data-driven programming;
- built-in subject-oriented programming languages (SQL, HTML,

Prologue, etc.).
Macros specify a defmacro macro. A special macrolet operator allows you

to define local macros. You can also specify macros for characters using define-
symbol-macro and symbol-macrolet. Paul Graham's On Lisp is a detailed look at
the possibilities of macros in Common Lisp.

Examples

For example, the following macro determines the operator aif, which
receives two or three forms, calculates the value of the first, stores it in the
variable it and if the value true (t) performs the second form, and if the value is
not true and the third form – then third (so-called anaphoric if):

(defmacro aif (test then &optional else)
 `(let ((it ,test))
 (if it ,then ,else)))
In this case, the value of the first form stored in the variable it is available

during the execution of both of the following:
(aif (long-and-complicated-calculation)
 (print it))
which corresponds to the following pseudocode:

47

it := long-and-complicated-calculation ()
if it then
 print it

Object-oriented programming

Read more: CLOS. Common Lisp Object System (CLOS) is a Common
Lisp extension that adds support for object-oriented programming capabilities to
Common Lisp. This extension is based on common functions, multiple
inheritance, declarative combination of methods, and meta-object protocol.

The fundamental objects of CLOS are classes, instances of classes,
general functions, and methods. A general function is a function whose behavior
depends on the classes or values of the passed arguments. A common function
object contains a set of methods, a lambda list, a method combination method,
and other information. Methods determine the behavior of general functions
depending on the classes of arguments passed; in other words, methods
specialize in general functions. When called, the general function performs a
subset of its own methods depending on the classes of arguments. [4] The usual
Common Lisp function has a single "body" (instruction list) that is always
executed when a function is called. Unlike ordinary functions, common
functions have a set of "bodies", only a subset of which is executed when calling
a common function. The "bodies" selected and the method of their combination
depend on the classes of parameters of the general function and the method of
combination.

CLIPS

CLIPS, (from English C Language Integrated Production System) –
software environment for the development of expert systems. The syntax and
name are suggested by Charles Forgy in OPS (Official Production System). The
first versions of CLIPS were developed in 1984 at the Johnson Space Center,
NASA (as an alternative to the then-existing ART * Inference system), until
funding was suspended in the early 1990s.

CLIPS is a production system. The main idea is to present knowledge in
the form of the following form:

 Rule 1:
 if
 (conditions 1 are met)
 then
 (perform actions 1)
 Rule 2:
 if
 (conditions 2 are met)
 then
 (perform actions 2)

48

 ...

This representation is close to human thinking and differs from programs

written in traditional algorithmic languages, where actions are ordered and
performed strictly by the algorithm.

CLIPS is one of the most widely used tool environments for developing
expert systems due to its speed, efficiency and freeness. As a public domain, it is
still updated and maintained by its original author, Gary Riley.

CLIPS includes a full-fledged object-oriented COOL language for writing
expert systems. Although it is written in C, its interface is much closer to the
LISP programming language. Extensions can be created in C, and CLIPS can be
integrated into C programs.

CLIPS is designed for use as a direct inference language. Like other
expert systems, CLIPS deals with rules and facts.

Facts

The information on the basis of which the expert system makes a logical
conclusion is called facts. CLIPS has 2 types of facts: ordered and template.
Template facts have a template specified by the deftemplate construct. The
ordered ones do not have an explicit deftemplate construction, however it is
implied. The pattern fact resembles a structure in C or an entry in Pascal, the
fields are called slots and are declared by the slot construct. For example, the
following template declares a template with the name cars and fields: model,
color and number.

 (deftemplate cars
 (slot model)
 (slot color)
 (slot number)
)
The facts are stored in working memory. The new facts are placed in

working memory by the assert command. For example, the following command
 (assert (cars)) will add to the working memory the ordered fact of cars.
The following command will place a template fact with three attributes.
(assert
 (cars
 (model "Audi")
 (color Black)
 (number "WY 2576")
)
)
CLIPS does not allow the placement in the memory of facts with the same

values of the slots, although, if necessary, this can be allowed with the
appropriate settings.

49

Rules

Subject area knowledge is presented in CLIPS in the form of rules that
have the following structure:

 (condition) {synonyms: antecedents in logic,
 left part – LHS in CLIPS terms}
 =>
 (action) {synonyms: consequent in logic,
 right part – RHS in terms of CLIPS}
The left part of the rule is a condition of its operation, and the right part is

the actions that must be performed if the conditions are met. Character =>
special character separating LHS and RHS.

Rules are announced using the defrule command
Example rule:
 (defrule search-black-audi
 (cars (model "Audi") (color Black))
 =>
 (printout " We have black Audi!" crlf)
).

Variables

When a fact is stored in memory, its fields can only be changed by
deleting and entering a new instance of the fact, even the modify command
sequentially deletes and adds a new instance of the fact.

In contrast to facts that are static, variables can take on different values.
The name of the variable must always be preceded by a "?" To associate a
variable with a fact, use the entry:

? var <- (fact_name (field value))
The defglobal construct allows you to describe variables that are global in

the context of the CLIPS environment. That is, the global variable is available
anywhere in the CLIPS environment and retains its value independently of other
constructs. The following is used to declare a global variable:

(defglobal [<defmodule-name>]? * <global variable name> * =
<expression>).

Logic inference machine

The process of adding rules to the working list and their execution is
controlled by a logic output machine (LIM).

Tabl. 5.1. Reaction LIM to certain events

Event Action

50

Adding facts to working memory # Comparison of facts with rules from the
knowledge base # Comparison of facts
with rules from the worksheet of rules

Delete facts from working memory # Comparison of facts with rules from the
knowledge base # Comparison of facts
with rules from the worksheet of rules

The comparison found rules that
correspond to the facts of working
memory

Add found rules to the rule worksheet

New rules have been added to the
worksheet

The working list of rules is sorted
according to the chosen conflict resolution
strategy

When comparing the facts with the
working list of rules, irrelevant
rules were revealed

Outdated rules (the conditions of which do
not satisfy the facts) are removed from the
work list

Executing command (RUN) The actions (right part) of the rule, which is
the first in the working list of rules, are
performed.

The worksheet has become empty Execution of rules from the working list
stops

Conflict resolution strategies

A person cannot always set complete conditions that would satisfy reality.
There is a legend, according to which Diogenes of Sinope, in defining Plato's
"Man is an animal on two legs, deprived of feathers", plucked a chicken and
brought it to school, declaring: "Here is a Platonic man!" To which Plato was
forced to add to his definition "... and with wide nails." When rules appear in the
knowledge base that satisfy the facts but perform opposite actions, a conflict of
rules arises. For example, there are two rules:

- (If a person pushes another person – punish the person for hooliganism;
- (If a person pushes another person on whom the truck was driving –

reward the person for saving a life).
These two rules will conflict with each other. The first rule is more

general and it is always activated if the second is activated. But the second rule
must be fulfilled first. CLIPS has several strategies for resolving such conflicts.
But even if it is not possible to choose the right strategy for all cases, you can
prioritize the rules. High priority rules will be followed first.

Jess

51

Jess is a system for developing expert systems, which is a descendant of
CLIPS and is written entirely under JAVA. This system was developed at
Sandia National Laboratories in Livermore, California. With Jess, you can
create Java software that treats knowledge as declarative rules.

Its powerful scripting language gives access to all Java APIs. Jess
includes a full-featured Eclipse-based development environment. Jess uses an
extended version of the Rete algorithm for the rule process. Rete is a very
effective mechanism for solving difficult tasks such as "many-to-many". It also
has many unique features, including a reverse chain, can directly manage and
evaluate Java objects.

Jess is also a powerful Java scripting environment from which you can
create Java objects, Java methods, and implement Java interfaces without
compiling Java code.

5.2. An ontological approach to the presentation and interpretation of

knowledge in distributed information environments such as the Internet

The World Wide Web is rapidly entering literally all walks of life. The
Internet is becoming an increasingly powerful and important source of
information. Data processing tools on the network are finding it increasingly
difficult to deal with the avalanche of information that already exists and is
being added to the network on a daily basis. In addition, data on the Internet is
organized very spontaneously and not systematically. Many technical problems
must be solved for the effective sharing of information. The problem of
connecting heterogeneous and distributed computer systems is known as the
interoperability problem. Interoperability must be provided at both technical and
informational levels. Problems that could arise due to data heterogeneity are
already known within the community of distributed database systems: structural
heterogeneity (schematic heterogeneity) and semantic heterogeneity (data
heterogeneity). Structural heterogeneity means that different information
systems store their data in different structures. Semantic heterogeneity considers
the content of the information element. To achieve semantic interoperability in a
heterogeneous information system, the content of the information exchanged
must be clear in all systems. Semantic conflicts occur whenever two contexts do
not use the same interpretation of information. The following reasons for
semantic heterogeneity can be identified:

- conflicts of confusion occur when information elements seem to have
the same meaning but differ in reality, for example due to different temporal
contexts;

- scaling conflicts occur when different reference systems are used to
measure values. Examples are different currencies;

52

- naming conflicts occur when the schemes of information notation are
significantly different. A common phenomenon is the presence of homonyms
and synonyms.

The use of ontologies to explain implicit and hidden knowledge is a
possible approach to overcome the problem of semantic heterogeneity.

Therefore, the purpose of this work was:
- understand what the term "ontology" means;
- investigate the purpose of ontologies and thus understand how to use

them for problems related to information integration;
- get acquainted with the current state of technology, in particular:

 basic ideas or models of modern ontologies;
 methods and tools to support the process of building and using

ontologies;
- have an idea of the potential use of ontologies.

 What is an ontology?

Origin, history of development and basic definitions. The term ontology
came from philosophy (derived from Aristotle's attempt to classify objects in the
world), where it is used to denote a system of knowledge relating to the world
around (as opposed to a system of knowledge about the inner world of man). In
other words, ontology is the science of being, the science of the nature of things
and the relationships between them. In the context of information technology of
knowledge representation, the term ontology can define a mechanism, a method
used to describe a certain area of knowledge (subject area), in particular the
basic concepts of this area, their properties and relationships between them.

There are many definitions of ontology, some of which contradict each
other, but the most widely used is the definition: "Ontology is a clear
specification of conceptualization." Here conceptualization means an abstract
representation of the subject area. The definition is also common: "Ontology is a
common understanding of an area of interest."

The word "ontology" is often perceived almost as a synonym for
knowledge engineering in artificial intelligence, conceptual modeling in
databases, and subject area (domain) modeling in object-oriented design.

Today, the ontology can be understood as:
- a solid semantic basis in determining the content;
- general logical theory, consisting of a dictionary and a set of statements

in a language of logic;
- the basis for communication between people and computer agents.
Used in the context of intelligent systems development, ontologies have

been classified into applied ontologies, domain ontologies, problem ontologies,
and top-level ontologies covering various aspects relevant to intelligent systems
modeling (Figure 5.1).

53

Fig. 5.1. Types of ontologies, according to their level of dependence on a

particular task or point of view

Top-level ontologies describe very general concepts, such as place, time,

substance, object, event, action, etc., that are independent of a particular
problem or domain: then, it seems, at least theoretically, reasonable to have
unified top-level ontologies for larger user communities. Domain ontologies and
task ontologies, respectively, describe vocabulary related to a typical field (eg,
medicine, automotive) or a typical task or activity (eg, diagnostics, sales) by
specializing the terms presented in the top-level ontology. Applied anthologies
describe concepts that depend on both the ontology of problems and the
ontology of the domain. These concepts often correspond to the roles that the
essence of the domain plays when performing an activity, such as replacing a
part or reserving a component.

In the late nineties, the role and influence of ontologies was rather limited
In the late 1990s, the role and influence of ontologies was rather limited, and the
understanding that the conceptual, yet feasible application domain model
provided significant additional value for all types of application scenarios, such
as knowledge management or e-commerce, changed dramatically. Obviously,
the main impetus for ontologies, gave the prediction of SemanticWeb. In
SemanticWeb, ontologies provide conceptual reinforcement to create metadata
semantics.

Ontologies allow us to present new concepts so that they become suitable
for machining. With the help of ontology, you can "bridge the gap" between new
concepts that the system has not yet encountered, and descriptions of already
known classes, relationships, properties and objects of the real world.

Motivation. Here are some reasons for developing ontologies:
- sharing a common understanding of the structure of information among

people or software agents;
- the ability to reuse domain knowledge;
- the ability to make explicit domain assumptions;
- separation of domain knowledge from operational knowledge;

54

- domain knowledge analysis.
Sharing a common understanding of the structure of information among

people or software agents is one of the most common goals in developing
ontologies. For example, suppose several different Internet pages contain
medical information or provide medical e-commerce services. If these Internet
pages share and publish the same basic ontology of terms they use, then
computer agents can extract and combine information from these different
Internet pages. Agents can use this connected information to respond to user
requests or as input to other applications.

Providing reuse of domain knowledge has been one of the driving forces
of the recent wave in ontology research. For example, models for many different
domains must represent the concept of time. This representation includes the
concepts of time intervals, points in time, relative measures of time, etc. If one
group of researchers has developed such a detailed ontology, others can simply
reuse it for their domains. Additionally, if you want to build a large ontology,
you can integrate several existing ontologies that describe parts of a large
domain.

Making the domain assumptions underlying the implementation clear
makes it easy to change these assumptions if our knowledge of the domain
changes. Hard coding of world assumptions in programming language code
makes these assumptions not only difficult to find and understand but also
difficult to change, especially for someone without programming experience. In
addition, explicit domain knowledge specifications are useful for new users who
need to learn what terms mean.

Separating domain knowledge from operational knowledge is another
common use of ontologies. We can describe the task of configuring a product
from its components according to the required specification and implement a
program that makes this configuration, regardless of the product and
components directly.

As soon as a declarative specification of terms becomes available, domain
knowledge analysis is possible. Formal analysis of terms is extremely valuable
when attempting to reuse existing ontologies and extend them.

Applications and examples. Ontologies have proven that they can be
essential elements of many applications. They are used in agent systems,
knowledge management systems and e-commerce. They can also combine
intelligent information, provide semantically based access to the Internet, and
extract information from texts in addition to what they use in many other
applications to explicitly identify the knowledge contained in them. However,
ontologies are useful not only for applications in which knowledge plays a key
role, but they can also cause a significant change in the current content of the
Web in accordance with the concept of SemanticWeb. Examples of the use of
ontologies on the Internet can be e-commerce sites, search engines, Web-
services.

55

For a more complete picture of what an ontology is, we give an interesting
example of an approach to the visualization of ontologies. In the process of
working with ontologies, the user often needs a brief overview of the entire
hierarchy, so that a quick and easy transition from one class of hierarchy to
another is possible. These requirements are met by a representation scheme
based on hyperbolic geometry. This visualization technique allows a quick
transition to a class that is far from the center, as well as a more detailed study of
the classes and their environment. In Fig. 5.2 presents an image of the scientific
ontology of KA2 using hyperbolic geometry.

Presentation of ontologies

The components that make up ontologies depend on the representation
paradigm. But almost all models of ontologies to some extent contain concepts
(other options: concepts, classes, entities), properties of concepts (other options:
slots, attributes, roles), the relationship between concepts (other options:
connections, dependencies, functions) and additional restrictions (defined by
axioms, in some paradigms facets).

Concepts are used in a broad sense. They can be abstract or concrete,
elementary or complex, real or fictitious. In other words, a concept can be
anything to which something is asserted and, therefore, could also be a
description of a task, function, action, strategy, thought process, etc.

Concepts in ontology are usually organized in taxonomy. Taxonomies are
sometimes considered complete ontologies, although ontologies cannot be
limited to this. Taxonomies are widely used to organize ontological knowledge
of a subject area, using generalization/specialization relationships through which
single/multiple inheritance could be applied.

Relationships represent a type of interaction between the concepts of the
subject area. Examples of binary relationships are "part-of" and "connected-to".

Axioms are used to model statements that are always true. They can be
included in the ontology for several purposes, such as limiting the information
contained in the ontology, checking the correctness or outputting new
information.

The term instance is used to represent elements in the subject area, ie the
element of this concept. The ontology, together with many individual instances,
forms the knowledge base.

56

Fig. 5.2 An example of ontology visualization using hyperbolic geometry

It should be noted that today the question of a clear distinction between

ontology and knowledge base remains open. Because instances themselves can
be concepts and often in modeling you need to decide what to refer to the
concept and what to the instance, and what to both the concept and the instance.
Therefore, some authors, for example, include a copy in the elements of
formalization.

As mentioned above, ontologies consist of hierarchical descriptions of
important concepts in the domain along with descriptions of the properties of
each concept. The degree of formalism used in fixed descriptions can vary from
natural language to logical formalisms, but it is clear that the growth of
formalism and regularity facilitates machine interpretation of information.

Ontology models can be classified as follows:
- simple models (for example, having only concepts);
- based on frames (have only concepts and properties);
- based on logic (for example, Ontolingua, DAML + OIL).
Informal linguistic models are often used to specify ontologies. In such

models, ontological concepts are defined according to verbal definitions, like an
explanatory dictionary. Some kinds of the most important connections can be
established between concepts. A glossary of terms in some subject area, a
thesaurus with its concepts and connections that define the terms of natural
language can be considered as ontologies. Information methods are used to

57

establish a connection between verbally defined concepts, as well as to search
for concepts relevant to the request.

In contrast to verbal models, ontologies based on logic are formally
defined and have the ability to make formal judgments. One of the first among
the proposed models was Ontolingua.

Ontolingua is a language based on KIF and FrameOntology. KIF
(Knowledge Interchange Format) was developed to solve the problem of
heterogeneity of languages for the presentation of knowledge. It provides the
definition of objects, functions and relationships. KIF has declarative semantics
based on numerous first-order predicates with prefix notation. In fact, because
KIF is an exchange format, its use is too time consuming to specify ontologies.
However, FrameOntology, formed on top of KIF, allows you to define the
ontology according to the frame paradigm, including terms such as class,
instance, subclass, etc. But it is at the same time less expressive than KIF.
Ontolingua allows you to include in the definition of KIF expressions based on
FrameOntology. Ontolingua was intended as an intermediate language for the
interaction of heterogeneous ontologies.

The OKBC (Open Knowledge Base Connectivity) ontological model,
formerly known as the Generic Frame Protocol, uses a frame model. It defines a
protocol for accessing knowledge bases stored in frame-based knowledge
representation systems and is considered as a supplement to language
specifications that are designed to support knowledge sharing. The GFP
knowledge model is an implicit formalism of representation that underlies
OKBC and provides a set of constructs such as constants, frames, slots, facets,
classes, and knowledge bases. The OKBC model serves as an intermediate
ontology language that maintains communication using OKBC.

The XOL (XML-based Ontology Exchange Language) model is designed
to meet the need for a language with the semantics of object-oriented knowledge
representation systems, but with XML syntax. The definitions of the ontology
that XOL is designed to encode include both schematic information (metadata),
such as class definitions, and non-schematic information (basic facts) such as
object definitions in object databases. XOL is a format for exchanging
ontological definitions and is therefore not intended for ontology development.
It serves as an intermediate language for transferring ontologies among various
database systems, ontology development tools or applications. XOL is similar to
other ontology exchange languages, in particular, it uses the OKBC model.

FLogic (Frame Logic) – a language that integrates languages based on
frames and first-order predicate calculus. It takes into account such structural
aspects of object-oriented and frame-based languages as object identity,
complex objects, inheritance, polymorphic types, query methods, encapsulation,
and more. In a sense, FLogic is in the same relation to the object-oriented
paradigm as the classical predicate calculus to relational programming.

58

Another class of formal ontological models is based on different types of
descriptive logics (DL). The family of formalities for the representation of
knowledge based on logic is well suited for the representation and reasoning of
terminological knowledge and ontologies. They are mainly characterized by a
set of constructors that allow you to form complex concepts and roles from
elementary concepts.

These models are interpreted in the tasks of checking the categorization
between concepts and acceptability, in terms of definitions of concepts like sets
of interdependent concepts. KL-ONE, LOOM, CLASSIC, FaCT are examples
of reasoning systems that are often used to model ontologies. They provide
typical reasoning services – classification, compatibility and instance control.

To consider the concepts of descriptive logic in the form of a set of
objects, the concept of interpretation is introduced. The feasibility test consists
of proof that there is at least one interpretation according to which the concept
corresponds to a non-empty set. Categorization between concepts means that for
any interpretation, a set that interprets one concept is a subset of a set that
interprets another concept. Proof of categorization comes down to such
feasibility.

The first DL system was KL-ONE, which claimed a transition from a
semantic network to more sound terminological (descriptive) logics. The impact
was very significant, so KL-ONE is considered the ancestor of a whole family of
languages. KL-ONE presents the most key concepts explored in subsequent DL
work, such as concepts and roles and their interactions, important ideas on
“value constraint” and “numerical constraint” that changed the use of roles in
concept definitions, and the most important inference. categorization and
classification.

The idea of creating CLASSIC was based on providing expressive
language and effective reasoning. CLASSIC, supports the description of objects
in terms of their relationship to other objects, as well as in terms of the level of
content structure. A significant disadvantage of systems of this type –
incomplete reasoning algorithms. But today CLASSIC is widely used by various
systems, such as OBSERVER.

LOOM belongs to the same type of models as CLASSIC. It is a high-level
programming language and environment designed for use in building expert
systems and other intelligent applications. LOOM achieves tight integration
between rule-based and frame-based paradigms. LOOM supports descriptive
language for modeling objects and relationships, and statement language for
defining constraints on concepts and relationships.

FaCT (Fast Classification of Terminologies) is a system that provides
reasoning support for ontology design, integration, and verification. FaCT is a
DL classifier that can also be used to check for inconsistencies in modal and
other similar logics. The most interesting feature of FaCT is its expressive logic
(including the SHIQ reasoning mechanism), its optimized tabular

59

implementation (which has become the standard for DL systems) and its
CORBA-based client-server architecture. FaCT optimizations, aimed at
improving system performance when classifying realistic ontologies, have made
it the fastest compared to previous DL systems.

The most significant development of ontological models based on logic is
part of the development of the Semantic Web. Let's pay attention to such Web
standards as XML and RDF.

XML (eXtensible Markup Language) is a metalanguage derived from
SGML (Standard General Markup Language). It was developed by the W3C, for
ease of implementation and interoperability with SGML and HTML. As a
language for the Web, the main advantages of XML are the following: it is easy
to analyze, the syntax is well defined and it is suitable for human perception.
Because XML is widely used, there are many software tools for parsing and
managing it. XML allows users to define their own tags and attributes, define
data structures (embedding them), extract data from documents. XML itself does
not have any special capabilities for ontology specification, as it offers only a
simple but powerful way to define the syntax for the ontology specification
language. Therefore, XML can be used for purposes such as providing the
syntax of a language set, such as XOL or OIL, and to cover the needs of
ontology exchange.

RDF (Resource Description Framework) was developed by the W3C to
create metadata describing Web resources. This makes it possible to specify the
semantics of XML-based data in a standardized, interoperable manner. The RDF
data model consists of three types of objects: resources-objects that refer to an
address on the Web; properties that define certain aspects, characteristics,
attributes or relationships used to describe the resource; and instructions that
assign values to a property in a particular resource.

The RDF data model is not provided with mechanisms for determining the
relationship between properties (attributes) and resources. This is the role of
RDF Schema (RDF Schema Specification language), a declarative language
used to define RDF schemas. It is based on some ideas of knowledge
representation (semantic networks, frames and predicate logic), but is much
easier to implement (but also less expressive) than complete predicate number
languages such as CycL and KIF. The main classes are class, resource, and
property, and hierarchies and type constraints can be defined. Some basic
limitations are also identified. However, RDF Schema lacks functions and
axioms for ontological definitions, but concepts, relationships, and instances can
be easily defined.

Next, consider languages based on these standards.
OIL (Ontology Interchange Language) is a proposal for a common

standard for describing and exchanging ontologies. It is the first language for
presenting ontologies in the W3C. This is the development of existing proposals
such as OKBC, XOL, RDF and the first Web-based language, which is designed

60

to form ontologies with formal semantics and reasoning services provided by
descriptive logic. In OIL, an ontology is a structure consisting of several
components organized into three levels: an object layer (which deals with
instances), a first meta-level (which contains definitions of ontologies), and a
second meta-level or ontological container (which, contains information on the
features of the ontology, such as authorship). Concepts, relations, functions and
axioms can be defined using OIL ontological definitions.

DAML + OIL (DARPA Agent Markup Language + OIL) was developed
by a joint committee with the United States and the European Union (IST) in the
context of DAML, a DARPA project to provide semantic interoperability in
XML. It is the result of a merger of DAML and OIL languages and is based on
earlier W3C standards such as RDF and RDF Schema, extending them to richer
modeling primitives. This model was designed as a basis for Web Ontology
Language (OWL).

OWL extends RDF and RDF Schema, providing additional vocabulary
alongside formal semantics, which is the basis of DAML + OIL, as well as built-
in support for ontology mapping. OWL has three dialects: OWL Lite, OWL DL
and OWL Full. They are complex and can be used in different applications
depending on the need or ease of output, or the formality of the descriptions.

SHOE (Simple HTML Ontology Extension), developed at the University
of Maryland, was the first extension of HTML to include machine-readable
semantic knowledge in HTML or other Web documents. It has recently been
adapted to support XML. The intent of this language is to make it possible for
agents to gather meaningful information about Web pages and documents by
improving search engines and knowledge collection. This process consists of
two phases: defining the ontology, annotating the HTML page with ontological
information to describe yourself and other pages.

OML (Ontology Markup Language), developed at the University of
Washington, is based in part on SHOE. In fact, the XML SHOE transformation
was first considered. Therefore, OML and SHOE have many similar features.
There are four different levels of OML: The core of OML, which is related to
the logical aspects of language, includes all other levels; Simple OML displayed
directly in the RDF Scheme; Abbreviated OML, which includes conceptual
graphics capabilities, and Standard OML are the clearest version of OML.

Ontology design methodologies

Previous sections have provided information on the use and languages of
ontologies. But it is also important to support the process of developing
ontologies. In this section, we will describe which methodologies provide
support for the ontology engineering process.

The process of constructing or developing ontologies used in information
systems remains an art rather than a science, and there is no one right way or
methodology to develop ontologies. This situation can be changed only through

61

an understanding of how to start building ontologies, ie a good methodology is
needed to develop ontologies. To date, there have been several proposals for
such a methodology, where people reflect their experience in building
ontologies. Here are the most promising of them.

The METHONTOLOGY methodology was developed in the Artificial
Intelligence Laboratory of the Madrid Polytechnic University.
METHONTOLOGY begins with the identification of the following actions that
are included in the development of ontologies: specifications, knowledge
collection, conceptualization, integration, implementation, evaluation,
documentation. The life cycle of the ontology, based on the improvement of the
prototype, allows the construction of ontologies at the level of knowledge and
includes: identification of the process of ontology development, life cycle based
on the development of prototypes and private methods of each action.
METHONTOLOGY is one of the most complete; however, recommendations
for pre-development processes are needed, and some actions and methods need
to be defined in more detail.

The TOVE methodology is based on the TOVE (Toronto Virtual
Enterprise) design experience. It mainly involves the construction of a logical
model of knowledge, which must be determined through the ontology. This
model is not created directly. First, an informal description is made of the
specifications that ontologies must meet, and then this description is formalized.
There are no life cycle guidelines in this methodology. In addition, although
ontologies have been developed using this methodology, and there are
applications that use these ontologies, their scope is limited to business. The
TOVE approach is most interesting for distinguishing an ontology estimate,
especially since the means of performing this estimate are provided in the form
of completeness theorems. These theorems are useful in many ontology support
problems.

SENSUS-based methodology. This ontology is used in natural language
processing and was developed at ISI (Institute of Informatics) by a natural
language group to provide a comprehensive conceptual framework for the
development of machine translators. The actual content was obtained by
extracting and combining information from various electronic sources. To create
the basis of the ontology, the process began with the manual merging of the
PENMAN and ONTOS top-level models (two very high-level linguistic
ontologies) and the semantic categories from the dictionary. Then the WordNet
ontology was connected (again manually) to the ontological database. The
connection tool was then used to merge WordNet with the English dictionary.
After that, to support machine translation, the result of this merger was
supplemented by Spanish and Japanese lexical entries from Collins' Spanish-
English Dictionary and Kenkyusha's Japanese-English Dictionary. SENSUS has
more than 50,000 concepts organized in a hierarchy according to the level of

62

abstraction. Includes terms with high and medium levels of abstraction, but does
not cover terms from special domains.

CommonKADs is a widely used methodology for developing knowledge
base systems in which ontologies play an important role. The KACTUS project
was the next project focused on the problem of ontology design. This
methodology emphasizes the design, redesign and reuse of modules. The
ontology is created from a library of small-scale ontologies, which requires
mapping between the different ontologies included in the development of the
new ontology. The selection of relevant ontologies from the library is supported
by the indexing scheme. This approach to the development of ontologies is due
to the development of applications. Yes, every time an application is built, an
ontology is built that represents the knowledge needed to create the application.
This ontology can be developed using the reuse of other ontologies and can also
be integrated into the ontology of the following applications.

5.3. List of control questions on the topic № 5

1. What is logical programming.
2. What is the programming paradigm.
3. Describe the language Visual Prolog.
4. Basic concepts of Visual Prolog.
5. Describe the language of Common Lips.
6. Common Lips paradigms.
7. Data types in Common Lips.
8. Maktoso in Common Lips.
9. Describe the CLIPS environment.
10. What is structural heterogeneity.
11. What is semantic heterogeneity.
12. Name the causes of semantic heterogeneity.
13. What is an ontology.
14. Types of ontologies according to the level of dependence on a specific

task.
15. Presentation of ontologies.
16. Ontology design methodologies.

6. Tasks for practical and independent work

6.1. Task № 1. Search for solutions to an intellectual problem in
space. Methods of blind search and heuristic search

When planning in the task space, space is formed as a result of the
introduction on a set of tasks of relations such as: "part - whole", "task -
subtask", "general case - special case", etc.

63

 In other words, the task space reflects the decomposition of tasks into
subtasks (goals on subgoals). The problem is to find the decomposition of the
original problem into subtasks, which leads to problems whose solution the
system knows. For example, it is known how the values of sin (x) and cos (x) are
calculated for any value of the argument and how the division operation is
performed. If it is necessary to calculate tg (x), then the solution will be to
present this problem in the form of decomposition tg (x) = sin (x)/cos (x) (except

x = /2 + k).

Representation of tasks in the state space involves setting a number of
descriptions: states, sets of operators and their effects on transitions between
states, target states. State descriptions can be character strings, vectors, two-
dimensional arrays, trees, lists, etc. Operators translate one state into another.
Sometimes they are represented as products A => B, which means that state A
will turn into state B.

 The space of states can be represented as a graph, the vertices of which
are denoted by states, and the arcs – by operators. Thus, the problem of finding a
solution to the problem <A, B> when planning by states is presented as a search
problem on the graph of the path from A to B. Usually the graphs are not set, but
generated as needed.

There are blind and directed methods of finding a way. The idea of the
blind search method is very simple and obvious. A point is taken at random in
the admissible area, and the value of the criterion in it is compared with the
current best. If a new random point is worse than the one that is stored as the
current best, then take another point. If you find a point at which the criterion is
better, it is remembered as the current best. It is guaranteed that in an unlimited
increase in the number of attempts we can get closer to the global optimum, ie.
the current best value found will be arbitrarily close to the exact solution.

 The blind method has two types: search deep and search wide. When
searching in depth, each alternative is explored to the end, without considering
the other alternatives. The method is bad for "tall" trees, as you can easily slip
past the right branch and spend a lot of effort exploring "empty" alternatives.

When searching broadly at a fixed level, all alternatives are explored and
only then is the transition to the next level.

 The method may be worse than the depth search method if in the graph
all the paths leading to the target vertex are located at approximately the same
depth. Both blind methods are time consuming and therefore targeted search
methods are needed

The method of branches and boundaries. In the process of finding
unfinished paths, the shortest one is selected and continues by one step. The
obtained new unfinished paths (there are as many of them as there are branches
in this vertex) are considered next to the old ones, and the shortest of them
continues again by one step. The process is repeated until the first achievement
of the target vertex, the decision is remembered. Then from the remaining

64

unfinished paths are excluded longer than the completed path, or equal to it, and
the remaining continue according to the same algorithm as long as their length is
less than the completed path. As a result, either all unfinished paths are
excluded, or a complete path is formed among them, shorter than previously
obtained. The latter path begins to play the role of a standard, etc.

Moore's shortest path algorithm. The output vertex X0 is denoted by the
number 0. Let the set of child vertices X (x(i) vertices be obtained during the
operation of the algorithm at the current step). Then all previously obtained
vertices are deleted from it and marked with a label increased by one compared
to the label of the vertex x i, and from them are pointers to Xi. Next, on the set of
marked vertices, which do not yet appear as pointer addresses, the vertex with
the smallest label is selected and child vertices are constructed for it. Vertex
markup is repeated until the target vertex is obtained.

Dijkstra's algorithm for determining paths with a minimum cost is a
generalization of Moore's algorithm by introducing arcs of variable length.

Dora and Mickey search algorithm with low cost. Used when the cost of
the search is high compared to the cost of the optimal solution. In this case,
instead of selecting the vertices that are least distant from the beginning, as in
Moore's and Dijkstra's algorithms, a vertex is chosen for which the heuristic
estimate of the distance to the target is the smallest. With a good score, you can
quickly get a solution, but there is no guarantee that the path will be minimal.

Hart, Nilsson and Raphael algorithm. The algorithm combines both
criteria: the cost of the path to the vertex g (x) and the cost of the path from the
vertex h (x) – in the additive function f {x) = g (x}-h (x). h (x) < hp (x), where hp

(x) is the actual distance to the target, the algorithm guarantees finding the
optimal path.

Algorithms for finding the path on the graph also differ in the direction of
search. There are direct, reverse and bidirectional search methods. Direct search
starts from the initial state and is usually used when the target state is specified
implicitly. The inverse search starts from the target state and is used when the
initial state is set implicitly and the target state is explicit. Bidirectional search
requires a satisfactory solution to two problems: changing the direction of the
search and optimizing the "meeting point". One of the criteria for solving the
first problem is to compare the "width" of the search in both directions – choose
the direction that narrows the search. The second problem is caused by the fact
that the forward and reverse paths can diverge and the more the search, the more
likely it is.

Task. Construct a tree of problem solutions and find an integer solution of
the linear programming task using the method of branches and boundaries
graphically and using the Find Solutions function in Excel. Compare the results
obtained.

Example of execution

65

Thus, the essence of the method of branches and boundaries is a
consistent search of options, considering only those of them that on certain
grounds are promising, and rejecting unpromising options. When using the
branch and boundary method, the domain of admissible solutions of the initial
problem is divided into subsets in a certain way, and subtasks are solved, ie
problems on these subsets with the same objective function and without taking
into account the integer condition (as linear programming task). If the result is
the optimal non-integer solution, the ODR of the subtask is again broken into
parts and this process continues until the optimal integer solution of the original
problem is found.

For example, if in the problem to the maximum at the decision of subtasks
we receive optimum integer decisions those of them which correspond to
increasing values of CF are remembered. If the "obtained" solution of the
subtask is not better than the stored integer solution, then such a subtask is
excluded from the list of tasks. The name of this method is explained by the fact
that in the process of solving the problem consistently "branch", breaking into
simpler subtasks.

Z = 3x1 + 5x2 → max
 5x1 + 2x2 ≤ 14 (6.1)

2x1 + 5x2 ≤ 16

 x1 , x2 – integer, non-negative

Let's construct the range of admissible values, ie we will solve graphically

system of inequalities. To do this, construct each line and determine the half-
planes, which are given by the inequalities (half-planes are marked by a dash).

66

Fig. 6.1. The boundaries of the scope of acceptable solutions

The intersection of half-planes will be an area whose coordinates of points

satisfy the condition of inequalities of the system of constraints of the problem.
Let's mark the boundaries of the area of the solution polygon.

Fig. 6.2. Рolygon of solutions of the task 1

Consider the objective function of the problem F = 3x1 + 5x2 → max.
Construct a line that corresponds to the value of the function F = 0: F = 3x1 +
5x2 = 0 (construct a gradient vector and a level line). Consider the objective
function of the problem F = 3x1 + 5x2 → max.

67

Construct a line that corresponds to the value of the function F = 0: F =
3x1 + 5x2 = 0 (construct a gradient vector and a level line). We will move the
level line parallel to the gradient vector (because we are interested in the
maximum), move the line to the last touch of the level line with the allowable
area. In the graph, this line is marked by a dotted line.

Fig. 6.3. Рoint С is the optimal point task 1

The area of valid solutions is a polygon. The line F (x) = const intersects

the region at the point C. Since the point C is obtained by the intersection of the
lines (1) and (2), its coordinates are satisfied by the equation of these lines:

5x1+2x2≤14
2x1+5x2≤16

Solving the system of equations, we obtain: x1 = 1.8095, x2 = 2.4762.

From here we find the maximum value of the objective function:

F (X) = 3 * 1.8095 + 5 * 2.4762 = 17.8095

The optimal value of the variable x1 = 1.81 was non-integer. Divide

problem 1 into two subtasks 11 and 12. In the first of them, the condition x1 ≥ 2
is added to the conditions of problem 11, and the condition x1 ≤ 1 is added to
problem 12. This procedure is called branching by the variable x1.

Let's solve graphically task 11 as a task of LP.

5x1+2x2≤14 (1)
2x1+5x2≤16 (2)
x1≥2 (3)

68

x1≥0 (4)
x2≥0 (5)

The area of acceptable solutions is a triangle. The line F (x) = const

intersects the region at point B. Since point B is obtained by crossing lines (1)
and (3), its coordinates satisfy the equation of these lines:

5x1+2x2≤14

x1≥2

Solving the system of equations, we obtain: x1 = 2, x2 = 2. From here we
find the maximum value of the objective function:

F (X) = 3 * 2 + 5 * 2 = 16

Got an integer solution. The new value of the current record will be equal

to F (X) = 16.
Since the point found is the first integer solution, it is necessary to

remember the corresponding value of the CF. The point itself is called the
current integer record or simply the record, and the optimal value of the integer
problem is called the current value of the record. This value is the lower limit of
the optimal value of the problem Z*.

Let's solve graphically problem 12 as a task of LP.

5x1+2x2≤14 (1)
2x1+5x2≤16 (2)
x1≤1 (3)
x1≥0 (4)
x2≥0 (5)

69

Fig. 6.4. Рoint B is the optimal point task 11

The area of valid solutions is a polygon. The line F (x) = const intersects

the region at the point D. Since the point D is obtained by crossing the lines (2)
and (3), its coordinates satisfy the equation of these lines:

2x1+5x2≤16

x1≤1

Solving the system of equations, we obtain: x1 = 1, x2 = 2.8. From here we

find the maximum value of the objective function:

F(X) = 3*1 + 5*2.8 = 17.

The optimal value of the variable x2 = 2.8 was non-integer. Divide
problem 12 into two subtasks 121 and 122. In the first of them, the condition x2
≥ 3 is added to the conditions of problem 121, and the condition x2 ≥ 2 is added
to task 122.

Let us solve graphically problem 121 as a task of LP.

5x1+2x2≤14 (1)

2x1+5x2≤16 (2)
0x1≤1 (3)
x2≥3 (4)
x1≥0 (5)
x2≥0 (6)

70

Fig. 6.5. Рoint D is the optimal point task 12

The area of acceptable solutions is a triangle. The line F (x) = const

intersects the region at the point C. Since the point C is obtained by the
intersection of lines (2) and (4), its coordinates satisfy the equation of these
lines:

2x1+5x2≤16

x2≥3

Solving the system of equations, we obtain: x1 = 0.5, x2 = 3. From here we
find the maximum value of the objective function:

F (X) = 3 * 0.5 + 5 * 3 = 16.5

Let's solve graphically problem 122 as a problem of LP

5x1+2x2≤14 (1)
2x1+5x2≤16 (2)
x1≤1 (3)
x2≤2 (4)
x1≥0 (5)
x2≥0 (6)

The area of valid solutions is a polygon. The line F (x) = const intersects

the region at the point D. Since the point D is obtained by crossing the lines (3)
and (4), its coordinates satisfy the equation of these lines:

71

x1≤1
x2≤2

Solving the system of equations, we get: x1 = 1, x2 = 2

Fig. 6.5. Рoint D is the optimal point task 12

From here we find the maximum value of the goal function: F(X) = 3*1 +
5*2 = 13.

Fig. 6.7. Рoint D is the optimal point task 122

The current record is Z = 16 ≥13, so we stop branching from this vertex.

The optimal value of the variable x1 = 0.5 was incomplete. Divide problem 121

72

into two subtasks 1211 and 1212. In the first of them, the condition x1 ≥ 1 is
added to the conditions of problem 1211, and the condition x1 = 0 is added to
problem 1212. Let's solve graphically problem 1211 as a problem of LP

5x1+2x2≤14 (1)
2x1+5x2≤16 (2)
x1≤1 (3)
x2≥3 (4)
x1≥1 (5)
x1≥0 (6)
x2≥0 (7)

We reduce the system of restrictions to the following type:

5x1+2x2≤14 (1)
2x1+5x2≤16 (2)
x1=1 (3)
x2≥3 (4)
x1≥0 (5)
x2≥0 (6)

The task has no valid solutions. Range of permissible values (RPV) is an

empty set.

Fig. 6.8. Аn empty set of solutions to the problem task 1211

73

Problem 1211 has no solution, so we interrupt the branching process for
it. Let's solve graphically problem 1212 as a problem of LP.

5x1+2x2≤14 (1)
2x1+5x2≤16 (2)
x1≤1 (3)
x2≥3 (4)
x1=0 (5)
x1≥0 (6)
x2≥0 (7)

The area of valid solutions is a polygon. The line F (x) = const intersects

the region at the point D. Since the point D is obtained by crossing the lines (2)
and (7), its coordinates satisfy the equation of these lines:

2x1+5x2≤16

x1=0

Solving the system of equations, we obtain: x1 = 0, x2 = 3.2. From here we
find the maximum value of the objective function:

F (X) = 3 * 0 + 5 * 3.2 = 16

Fig. 6.9. Рoint D is the optimal point task 1212

74

The current record is Z = 16 ≥ 16, so we stop branching from this vertex.
The optimal value of the variable x2 = 2.48 was non-integer. Divide problem 1
into two subtasks 11 and 12. In the first of them, the condition x2 ≥ 3 is added to
the conditions of problem 11, and the condition x2 ≥ 2 is added to task 12. This
procedure is called branching over the variable x2.

Let’s solve graphically task 11 as a task of LP.

5x1+2x2≤14 (1)
2x1+5x2≤16 (2)
x2≥3 (3)
x1≥0 (4)
x2≥0 (5)

The area of acceptable solutions is a triangle. The line F (x) = const

intersects the region at the point C. Since the point C is obtained by the
intersection of the lines (2) and (3), its coordinates satisfy the equation of these
lines:

2x1+5x2≤16
x2≥3

Solving the system of equations, we obtain: x1 = 0.5, x2 = 3. From here we

find the maximum value of the objective function:

F (X) = 3 * 0.5 + 5 * 3 = 16.5

Fig. 6.10. Рoint С is the optimal point task 1212

75

Let's solve graphically task 12 as a task of LP

5x1+2x2≤14 (1)
2x1+5x2≤16 (2)
x2≤2 (3)
x1≥0 (4)
x2≥0 (5)

The line F (x) = const intersects the region at the point C. Since the point

C is obtained by the intersection of lines (1) and (3), its coordinates satisfy the
equation of these lines:

5x1+2x2≤14
x2≤2

Solving the system of equations, we obtain: x1 = 2, x2 = 2. From here we

find the maximum value of the objective function:

F(X) = 3*2 + 5*2 = 16

Fig. 6.11. Рoint С is the optimal point task 12

76

The current record is Z = 16 ≥16, so we stop branching from this vertex.
The optimal value of the variable x1 = 0.5 was non-integer. Divide problem 11
into two subtasks 111 and 112. In the first of them, the condition x1 ≥ 1 is added
to the conditions of problem 111, and the condition x1 = 0 is added to problem
112.

Let us solve graphically task 111 as the task of LP

5x1+2x2≤14 (1)
2x1+5x2≤16 (2)
x2≥3 (3)
x1≥1 (4)
x1≥0 (5)
x2≥0 (6)

The problem has no valid solutions. PRV is an empty set.

Fig. 6.12. Task 111 has no solution

Task 111 has no solution, so we stop the branching process for it. Let's solve
graphically task 112 as a task of LP

77

5x1+2x2≤14 (1)
2x1+5x2≤16 (2)
x2≥3 (3)
x1=0 (4)
x1≥0 (5)
x2≥0 (6)

The area of valid solutions is a polygon. The line F (x) = const intersects

the region at the point D. Since the point D is obtained by crossing the lines (2)
and (6), its coordinates satisfy the equation of these lines:

2x1+5x2≤16

x1=0

Solving the system of equations, we obtain: x1 = 0, x2 = 3.2. From here we
find the maximum value of the objective function:

F (X) = 3 * 0 + 5 * 3.2 = 16

Fig. 6.13. Рoint D is the optimal point task 112

The current record is Z = 16≥16, so we stop branching from this top.

F(X) = 16
x1 = 2
x2 = 2

78

Fig. 6.14. Рroblem solving tree

Task options

1.

;962

,1

,1658

21

21

21

xx

xx

xx

 2.

;1642

,63

,1224

21

21

21

xx

xx

xx

.max32

;0,

21

21

xxF

xx

.max2

;0,

21

21

xxF

xx

3.

;3

,62

,103

21

21

21

xx

xx

xx

 4.

;2135

,1553

,14

21

21

21

xx

xx

xx

.min

;0,

21

21

xxF

xx

.max7

;0,

21

21

xxF

xx

5.

;2743

,923

,142

21

21

21

xx

xx

xx

 6.

;2743

,923

,142

21

21

21

xx

xx

xx

.max23

;0,

21

21

xxF

xx

.max23

;0,

21

21

xxF

xx

79

7.

;6

,44

,44

21

21

21

xx

xx

xx

 8.

;2043

,1023

,112

21

21

21

xx

xx

xx

.max28

;0,

21

21

xxF

xx

.max23

;0,

21

21

xxF

xx

 9.

;962

,22

,1648

21

21

21

xx

xx

xx

 10.

;22

,1

,623

21

21

21

xx

xx

xx

.max3

;0,

21

21

xxF

xx

.min2

;0,

21

21

xxF

xx

11.

;4

,42

,425

21

21

21

xx

xx

xx

 12.

;5,225

,52

,2

21

21

21

xx

xx

xx

.max

2
2

1

;0
2

,
1

xxF

xx

.max3

;0,

21

21

xxF

xx

13.

;2043

,1023

,112

21

21

21

xx

xx

xx

 14.

;1025

,52

,2

21

21

21

xx

xx

xx

.max32

;0,

21

21

xxF

xx

.max3

;0,

21

21

xxF

xx

15.

;1025

,122

,9

21

21

21

xx

xx

xx

 16.

;522

,32

,32

21

21

21

xx

xx

xx

.max3

;0,

21

21

xxF

xx

.max23

;0,

21

21

xxF

xx

17.

;824

,321

,7

21

21

21

xx

xx

xx

 18.

;72

,943

,1223

21

21

21

xx

xx

xx

.max2

;0,

21

21

xxF

xx

.max4

;0,

21

21

xxF

xx

80

 19.

;72

,343

,323

21

21

21

xx

xx

xx

 20.

;72

,943

,423

21

21

21

xx

xx

xx

.max4

;0,

21

21

xxF

xx

.max4

;0,

21

21

xxF

xx

21.

;123

,1042

,836

21

21

21

xx

xx

xx

 22.

;123

,642

,1236

21

21

21

xx

xx

xx

.min2

;0,

21

21

xxF

xx

.min2

;0,

21

21

xxF

xx

23.

;123

,742

,436

21

21

21

xx

xx

xx

 24.

;112

,2043

,2046

21

21

21

xx

xx

xx

.min2

;0,

21

21

xxF

xx

.min32

;0,

21

21

xxF

xx

25.

;142

,2443

,923

21

21

21

xx

xx

xx

.max4

;0,

21

21

xxF

xx

6.2. List of соntrol questions on the task № 1

1. Statement of the problem of mathematical programming ZMP.
2. Transition from ZMP to ZLP.
3. What is a valid area and how to build it?
4. What is a gradient vector?
5. How to find an integer solution of ZLP with the help of "Solution

Search"?
6. Describe the branches of the decision tree.
7. What is a task space?
8. What is the idea of blind search? Types of blind search.
9. Describe the method of hylogues and boundaries.
10. What algorithms do you know to teach paths on a graph?

6.3. Task № 2. Сonstruction of autoregressive models in Eviews

81

Objective: To gain skills in building regression models in the Eviews
package and learn to evaluate their parameters

Part 1. Create a working file in Eviews and import data.
Create a working file where the series will be generated. To do this,

perform the following actions: File, New, Workfile. In the window

Fig. 6.15. Workfile Range window

turn on Undate or irregular and set the number of the first (Start observation)
and last (End observation) observation, for example,

Fig. 6.16. Providing the number of the first and last observation

As a result, we received an empty workbook, in which you can download

a number of 100 observations.

82

Fig. 6.17. Blank workbook window

To enter data from the file, follow these steps:
File, Import, Read Text-Lotus-Excel, Specify the path where the row file

is
Located

Fig. 6.18. Path to the data file

Activate US_M1.txt and click OPEN. We get a window in which Specify

the name of the row in the Name to series tab.

83

Fig. 6.19. Import data file

2. Creating a difference equation of autoregression with a moving average in

Eviews.
1. The difference equation of autoregression with moving average

(ARMA) has the form:

)()1()2()1()(321 kekeckyckycky , (6.2)

where)(ky the dependent variable;)(ke input process variable, generate the

value of the dependent variable. The type of equation (6.2) is abbreviated as
ARMA (2,1) (ie, the second order autoregression and the first order relative to
the moving average). Choose the coefficients of equation (6.2) so that it is a
stationary process. This requires that the necessary condition is met

n

i
i

c
1

1, and sufficient 1
1

n

i
i

c .

To generate an input sequence)(ke , you can use the standard function of

the Eviews package - the NRND (normally distributed random numbers)
operator of the Eviews package. When we have the value of a random variable,

84

the values of the dependent variable are calculated using equation (6.2). To do
this, use the Generate Series option. Execution of point 3: We create a new
workbook.

 We generate. Quick, General Series, e = nrnd.

Fig. 6.20. Input sequence generation

- Select the coefficients c1, c2, c3. Their sum must be less than 1. Let c1
= 0.1, c2 = 0.2, c3 = 0.3.

- Generate a second-order process. To do this, first generate an empty
row. Quick, General Series

Fig. 6.21. Generation of an empty row

 We generate y = y. Opening the generated row by double-clicking, we
see a row in all cells whose value is NA, you need to edit the created row by

85

filling the first cell, for example, enter the number 1. To do this, right-click on
the row with merged cells, and in In the drop-down box, click Edit.

Fig. 6.22. Generation of NA series

Next, activate the cell (1,1) and write there 1.

Рис. 6.23. Editing a series NA

86

Fill the first two cells with the numbers 1 and 2. Then perform the
following actions: Quick, Generate Series, Generate in:

y = 0.1 * y (-1) + 0.2 * y (-2) + 0.3 * e (-1) + e.

Fig. 6.24. Generation of the difference equation

Thus, we constructed a series that corresponds to model (6.2).
4. It is necessary to calculate the coefficients of the model (6.2).
 Execution: Objects / New Object / Equation
In the Equation Specification window, specify the type of equation that
describes a series of data:

eecycycy)1(*)3()2(*)2()1(*)1((6.2)

Fig. 6.25. Equation for calculating the coefficients of the model

87

This equation exactly matches the form used in the source data generation
program. As a result, a new Equation window will appear: UNTITLED
Workfile: UNTITLED, in which you will find estimates of the coefficients of
the equation and related statistical characteristics.

Fig. 6.26. Estimates of the coefficients of the equation and related
statistical characteristics of the model

To save this window, you must activate Name and specify a name.
Compare the obtained values of the coefficient estimates with the exact values
that were used in generating the data sample.

Building a model of non-stationary process

A) Use the data stored in the US_M1.txt file to build a non-stationary
process model. This file contains data for the M1 aggregate from the first quarter
of 1960 to the fourth quarter of 1991 for the United States (128 values). Use the
Eviews package to organize your work file and enter data from disk. Data
processing is performed in the following sequence:

- plot a graph of the introduced series and visually determine the
presence of nonstationarity (trend);

- from the graph we conclude that the series has a tendency to rise, so the
expectation is growing, so the series has a trend, so it is non-stationary.

B) Find the equation that describes the trend:

)()log(2

210 kkakaaus , (6.3)

where k – discrete time (it is in the file discrtime.txt; residk)(, ie the

remainder obtained after estimating equation (6.3), this value will be used later,

88

so form an additional series)(ke of values resid (mark it, for example ek). The

equation for estimating the trend of prologarithmic values of the series has the
form:

 2*)3(*)2()1()(kckccusLOG ,

where)3(),2(),1(210 cacaca values (discrete time) must be taken from

the file disctime.txt (link: https://drive.google.com/drive/folders/1cDvuOS1rpAh
d8nUZuDOAJEH-Z9N1Mkjt?usp=sharing).

How adequate is the obtained model?
Procedure:

1. Create a new workbook for 128 members of the series.
2. Import the series US_M1.txt (link: https://drive.google.com/drive/

folders/1cDvuOS1rpAhd8nUZuDOAJEH-Z9N1Mkjt?usp=sharing).
3. Build a graph of the series US (to build a graph, you must open the

series and perform the actions Viev, Line Graph.) The visual graph can visually
determine the presence of nonlinearities.

4. Calculate and print the parameters of descriptive statistics. To find the
parameters of descriptive statistics, perform the following actions: View,
Descriptive Statistic, Histogram and Stats (make a report).

5. Review the correlogram (ACF) – Autocorrelation and PC – Partial
Correlation. To do this, open the row, View tab, Corelogram.

6. Import the number k (time) (disctime file).

Fig. 6.27. Import series k (time)

1. Normalize the series US_M1.txt. by logarithm. Generate a series lm1 =
log (us) – (Quick, General Series).

89

Fig. 6.28. Logarithmization of the series US_M1.txt

2. Model the trend using a polynomial of degree 2: Quick, Estimate
Equation lm1=c(1)+c(2)*k+c(3)*k^2.

90

Fig. 6.29. Trend modeling and statistical characteristics and estimates of
the lm1 model

In the last window we can see the estimated coefficients of the model and
a set of statistical characteristics of this model. Characteristic R-squared
(coefficient of determination).

In order to preserve the comfort of the latest model, correct resid in ek
(right mouse button on the file resid, object copy). We conclude that the model
is adequate for R ^ 2 – the coefficient of determination (for an adequate model it
is close to 1).

Fig. 6.30. Save model remnants

Part 2. Calculation of ACF and PC.
The main characteristics of the time series are mathematical expectation,

variance, autocorrelation function, partial autocorrelation function. The time

91

series is given, where is the number of observations of the series. It is necessary
to find selective estimates of autocorrelations. Find the ACF of a given series.

The autocorrelation coefficient is calculated by the formula:

0c

c
r k

k
 , (6.4)

де))((
1

1

1

zzzz
N

c
kt

kN

t
tk

 , where k - delay, shift, lag, delay.

Suppose 0k , that is, it is necessary to calculate 0
c , then the formula

(6.4) матиме will look like:

2

11
0)(

1

1
))((

1

1

N

t
tt

N

i
t

zz
N

zzzz
N

c (6.5)

The first-order autocorrelation coefficient is calculated by the formula:

 1k :

10

1

2

2

9

1

1

)(
1

1

))((
1

1

t
t

t
t

zz
N

zzzz
Nc (6.6)

The second-order autocorrelation coefficient is calculated by the formula:

 2k : .

)(
1

1

))((
1

1

10

`1

2

3

8

1

2

t
t

t
t

zz
N

zzzz
Nc (6.7)

and so on.
In practice, to obtain a useful estimate of ACF, we need at least 50

observations and sample autocorrelations should be calculated for k = 1, 2,… K,
where K <= N / 4.

To clarify the order of the autoregressive component allows partial
autocorrelation function (PC), which is calculated according to the formulas:

)1(11 Φ ,
2

1

2

12

22
1

Φ , . . . ,

1

1
1

1

1
1

1
s

j
j,js

s

j
js,jss

ss

Φ

Φ
Φ

 (6.8)

where i – the value of the autocorrelation function

j-s1,-sss,j1,-sjs,
ΦΦΦΦ , (6.9)

s – ordinal number of the coefficient, j = s – 1.

Let’s calculate

92

)(1

)(

222121

1222213

33

 (6.10)

(s = 2, j = 1) => 11221121

 .

Let's calculate

)(1

)(

333232131

1332323314

44

 (6.11)

Need to find 31

 та 32
 . For 31

 s=3, j=1.

 (6.12)

For 32
 s=3, j=2.

 21332232 . (6.13)

PC more accurately reflects the order of the AR model due to the lack of

influence of intermediate correlation coefficients on selected values of the
variable, ie, the coefficient characterizes the degree of relationship between
adjacent (in time) variable values and characterizes the relationship between
variable values distant at two periods sampling. It is considered expedient to
consider the coefficients of PC and those numbers of their values that stand out
among others (is the largest in modulus) and they are candidates for inclusion in
the delay numbers of the autoregressive model.

Task: Calculate the ACF and PC for a given series, compare the results
with the results of the calculation of these indicators in Evies.

Task options:
1. 47; 65; 22; 70; 37; 64; 55; 41; 55; 34.
2. 44; 60; 22; 59; 37; 55; 41; 59;70; 48.
3. 59; 44;71;35;57;40;58;44;80;55.
4. 48; 71; 35; 57; 40; 58; 44; 80; 55; 70.
5. 71; 35; 57; 40; 58; 64; 71; 55; 74; 50; 58.
6. 35; 57; 40; 58; 50; 71; 56; 74; 60; 44.
7. 44; 80; 55; 26; 37; 74; 51; 57; 50; 66.
8. 50; 71; 56; 74; 50; 58; 45; 54; 36; 53.
9. 62; 44; 43; 52; 38; 59; 55; 41; 53; 49.
10. 44; 43; 52; 38; 59; 55; 41; 53; 49; 56.
11. 56; 74; 50; 58; 45; 54; 36; 53; 59;44.
12. 50; 58; 45; 54; 36; 53; 59;44; 70; 67.
13. 52; 38; 59; 55; 41; 53; 49; 56; 45; 57.

93

14. 55; 26; 37; 74; 51; 57; 50; 66; 35; 67.
15. 26; 37; 74; 51; 57; 50; 66; 35; 67; 26.
16. 71; 56; 74; 50; 58; 45; 54; 36; 53; 45.
17. 56; 74; 50; 58; 45; 54; 36; 53; 45; 50.
18. 55; 41; 53; 38; 58; 41; 53; 49; 35; 57.
19. 53; 38; 58; 41; 53; 49; 35; 57; 68; 60.
 20. 38; 58; 41; 53; 49; 35; 57; 68; 60; 57.
21. 58; 41; 53; 49; 35; 57; 68; 60; 57; 73.
22. 41; 53; 49; 35; 57; 68; 60; 57; 73; 40.
23. 53; 49; 35; 57; 68; 60; 57; 73; 40; 56.
24. 49; 35; 57; 68; 60; 57; 73; 40; 56; 70.
25. 5; 57; 68; 60; 57; 73; 40; 56; 70; 51.

6.4. List of соntrol questions on the task № 2

1. How to obtain estimates of the coefficients of the equation of the type

AR or ARKS using the package Eviews?
2. Why logarithm the values of the time series?
3. What is the difference between stationary and non-stationary

processes?
4. Define a stationary process?
5. Why is the process represented by the data in the file US_M1.txt non-

stationary?
6. Tell us what is the sequence of building a model of non-stationary

process?
7. What are the first and higher order differences used for?

6.5. Task № 3. Determining the best autoregressive model and

building a forecast based on the selected model

Types of time series models.

Depending on the nature of the behavior of these coefficients are divided
into the following processes:

- AR (k) – (autoregressive model) – autoregressive model of order k;
- MA (m) – moving average – moving average of order m;
- ARMA (k, m) – autoregression model of sliding mean order k;
- ARIMA (k, d, m) – integrated model of autoregression-moving

average, k-order of autoregression, m – order of moving average, d – order of
integration.

Autoregression model of order k - AR (k).

94

Let there be a time series nyyy ,,, 21 , or nt ,,2,1 where ty is the

current level value.
The basic assumption is that the current value of the series equation is a

linear combination of k previous values and a random error.

General autoregression model:

tktkttt yyyy 2211 ,

where tk і

k ,,1 – model parameters or model coefficients – random error

or "white noise". When building the AR model, it is necessary to solve two
problems: what order of the model should be chosen and why the coefficients of
the model are equal. Addressing these issues is called a model evaluation
procedure.

The most accurate estimates of the coefficients for the model can be
obtained AR(1), AR(2).

Model AR(1)
View ttt yy 11 .

Model AR(2)
View tttt yyy 2211 .
Models of moving average MA (m)
These models are based on the assumption that the current value of the

level of the series is represented as a linear combination of current and past error
values, ie, mtmtttty 2211 , where i – model

parameters, t – white noise, tm – order of the model.

MA(1)
View 1 ttty .

Moving average order models 1 can be used only to describe the process
with ACF, which ends after the first delay and such that 5,0r , where r is the

sample autocorrelation coefficient.
Models ARMA (p, q) or ARIMA (p, d, q)

Generalization of the ARMA (p, q) or ARIMA (p, d, q) model –
autoregressive models of the moving average ARMA (p, q) = ARIMA (p, 0, q)

These models are based on the assumption that the current level of a series
is a linear combination of p of its previous levels and q of its previous errors.
When identifying the ARMA model (p, q) use the fact that their autocorrelation
functions fade smoothly along the exponent or sine wave.

General view of the model:

qtqtttptpttt yyyy 22112211

Methods of integration.

95

1. Taking the final differences. Let the input row
n

yyy ,,, 21 not be

stationary. Let's build a series 121 ,,, nxxx where 1
ttt

yyx . If this series

satisfies the stationary condition 1I s, then the input series
n

yyy ,,, 21 is

denoted, and it is concluded that the input series is close to linear.

Otherwise go to the series 121 ,,, nzzz where

212111 2)(
ttttttyttt

yyyyyyyxxz . It is similarly denoted,

and it is concluded that this series is close to quadratic.

2. Logarithm of chain indices, ie. Occurs if the time series is close to

the exponent
ta

t eay 1

0
 .

The integration procedure has to be applied quite often, but after that in
the stationary series we can talk about the constancy of the second-order
autocorrelation coefficients.

2. Procedure for work

2.1. Import a series from Excel according to the option in the Evies
environment.

2.2. Find ACF and ACF for a given series.
2.3. From the analysis of CHAKF to define numbers of delays which can

be used at modeling of a number.
2.4. Build models and analyze statistical characteristics, determine the

best model that describes the process. To do this, use the formula

UDW

BSCAIC

R ee
BSCAICe

BSCAICBSCAIC

N

RSS
eKK

 21

0,

0),ln(2

. (6.14)

For the best QC model the least.
2.5. Determine the adequacy of the model.
2.6. Draw conclusions.

Explanation:

For example, in the analysis of CHAKF it was found that the most
significant numbers of delays – 1, 2, 5. We build the following models: Quick,
Estimate equation

y=c(1)*y(-1)
y=c(1)*y(-1)+c(2)*y(-2)
y=c(1)*y(-1)+c(2)*y(-2)+c(3)*y(-5)

96

Fig. 6.31. Statistical characteristics of the first-order autoregressive model

To get the Tayle factor U in the window click Forecast and in the
window

Fig. 6.32. Forecast window

click OK. We get a window

97

Fig. 6.33. Statistical indicators of the forecast

We find the indicator Theil Inequality Coefficient = 0.0723, so u =
0.0723. (The closer the Tayle ratio is to 0, the more accurate the prediction).

6.6. List of соntrol questions on the task № 3

1. How to build a model AR ()?
2. What is the order of the model?
3. How to build a model MA ()?
4. In which cases is the ARIMA () model built?
5. To predict which series are used the above models?
6. What is the autocorrelation function?
7. What is a partial autocorrelation function?
8. What is lag, delay?
9. How to build an autoregressive model based on the analysis of ACF

and CHAKF?

6.7. Task № 4 Topic: Starting, getting started and basics of Visual

Prolog

Launch and get started in the visual environment of Visual Prolog

application development. To start Visual Prolog, follow these steps: Start →

98

Programs → Visual Prolog 5.2 → Vip32. This opens the main window, called
the Task window (Fig. 6.34).

Fig. 6.34. Task window

The File, Edit, Project, Options, Help, and Window menus are usually

available in the Task window, but additional menu items may appear when you
activate some other windows. Frequently used menu commands are
implemented on the toolbar in the form of buttons (Fig. 6.35).

Fig. 6.35. Toolbar

The correspondence of the buttons located on the toolbar to the menu

commands is given in table. 6.1.

Table 6.1. Toolbar buttons and corresponding menu commands

Toolbar buttons Menu commands

 File → New

 File → Open

99

 File → Save

 Edit → Undo

 Edit → Redo

 Edit → Cut

 Edit → Сору

 Edit → Paste

 Project (Compile file)

 Project → Build

 Project → Run

 Project → Debug

 Project → Test Goal

 Project → Browse

 Project → Tree

Options → Temporary →

Font

 Help → Local Help

At the bottom of the Task window is a tooltip. It is divided into two parts

(Fig. 6.36). The left field is used to display context-sensitive information, such
as tooltip tooltips on the toolbar or information about the current control in the
dialog editor, and so on. The right field is used by the builder to display the
states of generation, compilation, layout of the current resource.

Fig. 6.36. Hint bar

Creating a project. To create a new project, you need to select some
Visual Prolog compiler options. To do this, follow these steps:

1. Start the Visual Prolog visual development environment (Start →
Programs → Visual Prolog 5.2 → Vip32). The first time you start the screen, the
window shown in Fig. 1.4. You will also be notified that the initialization file
for Visual Prolog VDE (Visual Develop Environment) has been created by
default.

2. Create a new project. To do this, select the command Project → New
Project, the result is activated dialog Arrlication Expert (Fig. 1.4).

100

3. Specify the base catalog and project name. In the Field Name field,
enter the name Test, then left-click in the Name field. VRP File. After clicking,
in the Name field of. The VRP File should appear: test.vpr. You also need to
check the box for Multiprogrammer Mode and left-click in the Name of RPY
File field. Then the project file name Test.prj will appear there (Fig. 6.37).

Fig. 6.37. General settings of the Expansion dialog box

1. Define the purpose of the project. On the Target tab, it is recommended

to select the parameters shown in Fig. 6.38. and click the Create button to create
the project files.

101

Fig. 6.38. Options on the Target tab of the Аррliсаtion Ехреrt

2. Set the necessary compiler parameters for the created project. To
activate the Compressor Options dialog box, select Options → Project →
Compressor Options. Then go to the Warnings tab. To set the necessary
parameters, perform the following steps:

- set the Nondeterm switch. This is required so that the Visual Program
compiler accepts by default that all user-defined predicates are nondeterministic
(may have more than one solution);

- uncheck the following options: Not Quoted Symbols, Strong Type
Conversion Check and Check Type of Predicates. These steps will reduce the
number of warnings from the compiler;

- click OK to save the compiler options settings.
As a result of the above steps, the Compiled Options dialog box will have

shown in Fig. 6.39 view.
Running and testing the program. To verify that the system is configured

properly, follow these steps:
1. In the project window (Fig. 6.34,6.40) double-click the left mouse

button to open the file test.pro.
2. In the goal section, type the following from the keyboard instead of test

(): write ("Hello world!"), Nl.
3. Press the button on the toolbar (either <Ctrl> + <g>, or activate the

Project → Test Goal command). In Prolog terminology, it is called GOAL and
this is enough for the program to run. If your system is set up properly, a Hello
world window will appear on the monitor screen! under which it will be written

102

yes (Fig. 6.41). To proceed to testing other GOALs, you must close the program
results window.

Fig. 6.39. Compiler options

Fig. 6.40. Project window

Comments on the properties of the Test Goal utility. The visual
development utility interprets GOAL as a special program that is compiled,
compiled, generated into a file, and Test Goal runs it. This utility internally
extends the specified GOAL code so that the generated program finds all
possible solutions and shows the values of all variables. The Test Goal utility
compiles this code using the compiler options set for the open project (the
recommended compiler options for the TestGoal project we defined earlier). It
should be noted that the Test Goal utility compiles only the code that is defined
in the active editor window (code in other open editors or project modules, if
any, is ignored). The EASYWIN strategy is used when composing a Test Goal
file. It is not possible to define any layout options for Test Goal, as any Make
Options set for the open project are ignored. Therefore, Test Goal cannot use
any global predicates defined in other modules. The utility has a limit on the
number of variables that can be used in GOAL. There are 12 for a 32-bit visual

103

development environment, but this number may vary depending on the version
of Visual Prolog.

Fig. 6.41. Hello world test program

Error handling. If there are errors in the program, then during
compilation the visual development environment will display the Errors
(Warnings) window, which will contain a list of error messages. If you double-
click on one of the messages, the environment will move the cursor to the line of
code in which the corresponding error in the source code. You can use the <F1>
key to display the Visual Prolog online help system. When the help window
opens, you need to click on the Search button, dial the error number, and the
corresponding help window will appear on the screen with more complete
information about the error.

Construction command. Project → Compile Module command. This
command (corresponding to <Ctrl> + <F9>) attempts to compile the module
contained in the currently edited file. Execution of the command depends on the
following properties of the file:

- if the file has the extension pro and is a module of the current project,
then VDE tries to compile this file;

104

- if the file is not a module of the current project and its extension – pro,
pre, inc, con or dom, then VDE tries to find the project module that includes this
file and compile the first module found;

- in all other cases, VDE tries to compile the module selected in the
project window.

VDE cannot compile a file that is not part of an open project. Instead, the
VDE file will compile the module selected in the project window. If no project
is open in VDE, no files will be compiled. The Project → Compile Module
menu command is locked and the <Ctrl> + <F9> key combination does not
work. The only possible action is to run the Test Goal utility.

Project → Build command. If any resources have changed since the last
project build, code experts can update some sections in the source files before
building. This command (corresponding to <Alt> + <F9>) builds the project by
checking the timestamps of all source files in the project, so if the source files
(or files included in them) are newer than the dependent OBJ files, then the
relevant project modules will be recompiled.

The Build command also builds resource files and a help file (if needed).
The project is then composed to generate a target module (program or DLL).

Project → Rebuild All command. This command (corresponding to
<Ctrl> + <Alt> + <F9>) performs the same action as Project → Build, and all
files will be re-generated or compiled and compiled regardless of their
timestamps.

Project → Stop Building command. This command (corresponding to
<Alt> + <F10>) is used to stop compiling / composing.

The Project → Run command. If necessary, this command
(corresponding to the <F9> key) will perform the action Project → Build and
then run the generated file.

Project → Link Only command. This command (corresponding to
<Shift> + <F9>) is used to perform the layout. In this case, the program builder
calls the compiler and does not check whether any project modules need to be
recompiled (or even compiled for the first time).

Project → Test Goal command. This command (corresponding to
<Ctrl> + <G>) is used to test Goals. The program is compiled and composed in
a special mode, and then run the appropriate file. The Test Goal utility searches
for all solutions for the purpose defined in the program. For each solution, the
Test Goal displays the values of all variables in the GOAL section and the
number of solutions. This feature is a convenient way to check local predicates
in the module.

For example, the following goal: GOAL X = 2; X = 1, Y = X+1. For
example, the following goal:

Resource → Build Resource Only command. When the project window
is activated, the Resource command appears in the Project menu. Selecting this

105

item (or pressing <Alt> + <F8>) generates the selected files with the extensions
rc and res and the required constant files.

Example 6.1.

1. Create a new project. Specify the base directory and project name
(lab1ex1). Define the purpose of the project. Set the necessary compiler
parameters for the created project.

2. In the file with the extension lab1ex1.pro enter the following program:

Fig. 6.42. Derivation of the target testing mode

predicates
likes (symbol, symbol)

clauses
likes (ellen, tennis).
likes (john, football).
likes (tom, baseball).
likes (eric, swimming).
likes (mark, tennis).
likes (bill, Activity):- likes (tom, Activity).

goal
 likes (bill, baseball).

3. Run the program with the Test Goal utility. The Test Goal utility will
answer in the program window: yes.

4. Try the following query in the GOAL section: likes (bill, tennis). The
Test Goal utility must answer: no.

Debug commands.
Project → Debug command. Starts the debugging process. You can also

start the debugger by pressing <Strl> + <Shift> + <F9>.
You can use the View dialog to open additional information windows that

display different environment states and debugging variables:
- view → Call Stack - opens the call stack information window;

106

- view → Local Variables – opens the information window of local
variables.

The following commands are used to perform debugging steps:
- run → Trace Intro (or key <F7>);
- run → Step Over (or the <F8> key);
- run → Run to Cursor (or the <F4> key).

Basic principles, mechanisms and features of programming in the

Prolog language. In Prolog (Programming Logic) the solution of the problem is
obtained by a logical conclusion from previously known statements. Usually, a
program in the Prologue language is not a sequence of actions, it is a set of facts
with rules that provide conclusions based on these facts. Therefore, the Prologue
is known as a declarative language. The prologue is based on Horn's sentences,
which is a subset of the formal system called predicate logic. The prologue
includes a derivation mechanism that is based on matching samples. By
selecting answers to queries, he receives known information, ie knowledge of
the Prologue about the world - is a limited set of facts (and rules) set in the
program. One of the most important features of the Prologue is that, in addition
to the logical search for answers to questions, it can deal with alternatives and
find all possible solutions. Instead of the usual work from the beginning of the
program to its end, the Prologue can go back and review more than one "path" in
solving all components of the problem. The programmer on the Prologue
describes objects and relations, and then describes the rules under which these
relations are true.

The main sections of Visual Prolog programs. Typically, a program on
Visual Prolog consists of four main program sections. These include:

- clauses section;
- section predicates;
- section domains (domains);
- section Goal (goals)

Clauses. The clauses section contains all the facts and rules that make up

the program. Facts are attitudes or properties that are known to have the
meaning of "Truth." Fact represents either a property of an object or a
relationship between objects. The fact is self-sufficient. No additional
information is required to confirm the fact, the fact can be used as a basis for a
logical conclusion.

The fact in Visual Prolog consists of the name of the relationship and the
object or objects placed in parentheses. The fact ends with a dot (). That is, the
sentence in the natural language "John loves football" (John likes football), in
the syntax of Visual Prolog will look like (john, football).

107

Facts, in addition to relationships, can also express properties. For
example, the sentence in natural language "Grass is green" on the Visual Prolog,
expressing the same properties, looks like this: green (grass).

Rules are related relationships, they allow you to logically deduce one
piece of information from another. The rule takes the value "True, if it is proved
that the specified set of conditions is true. A rule is a property or relationship
that is valid when a number of other relationships are known to be valid.
Syntactically, these relationships are separated by commas. All rules have 2
parts: title and body, separated by a special sign ": -".

The title is a fact that would be true if several conditions were true. This is
called a conclusion or dependent relationship.

The body is a set of conditions that must be true in order to prove that the
title of the rule is true. The following is a generalized rule syntax in Visual
Prolog:

title: - <subpurpose>, <subpurpose>, ..., <subpurpose>.

The body of a rule consists of one or more sub-goals. Sub-goals are

separated by commas, defining the conjunction, and after the last sub-goal of the
rule a full stop is placed. Each subgoal calls another Visual Prolog predicate,
which can be true or false. After the program has made this call, Visual Prolog
checks the truth of the called predicate, and if it is true, the work continues, but
with the following sub-goal. If in the process of such work a point was reached,
then the whole rule is considered true, if at least one of the sub-goals is wrong,
then the whole rule is wrong. The following are the rules that correspond to the
"likes" link:

(Аnn likes everything that likes John).

(Kate likes everything that is green).

Using these rules, you can find out from the previous facts some things

that Anya and Katya love:

 (Ann likes football).

 (Kate likes grass).

To translate these rules into Prolog, you need to change the syntax as

follows:

likes (аnn, Something):- likes (john, Something).

108

likes (kate, Something):- green (Something).

The symbol ": -" is equivalent to "if". However, if in the Prologue is

different from if written in other languages, such as Pascal, where the condition
contained in the if statement must be specified before the body of the statement
that can be executed. This type of operator is known as a conditional if / then
operator.

Visual Prolog uses a different form of logic in such rules. The conclusion
about the truth of the title of the Prolog rule is made if (after) the body of this
rule is true, ie the Prologue rule corresponds to the conditional form then / if.

All sentences for each particular predicate in the clauses section must be
placed together. A sequence of sentences describing one predicate is called a
procedure.

The rule can be considered as a procedure. In other words, the following
rules:

likes (аnn, Something):- likes (john, Something).

likes (kate, Something):- green (Something).

also means "To prove that Anya loves something, prove that John loves it" and

"To prove that Katya loves something, prove that it is something green."
Predicates section. If any predicate is described in the clauses section of

the program on Visual Prolog, it must be declared in the predicates section,
otherwise Visual Prolog will not understand what you are "telling" it. As a result
of declaring a predicate, the programmer reports which domains (types) the
arguments of this predicate belong to. Visual Prolog comes with a large set of
built-in predicates (no need to announce them), and an online help guide
provides a complete description.

Predicates set facts and rules. In the predicates section, all predicates are
simply listed with the types (domains) of their arguments. Declaring a predicate
begins with the name of that predicate, followed by a parenthesis ("followed by
zero or more domains (types) of predicate arguments, followed by a comma
after each domain (type) of the argument, and closing the parenthesis") "after the
last argument type). . Example:

predicates name (argument_type1 OptionalName1,
argument_type2 OptionalName2,...,argument_typeN
OptionalNameN)

It should be noted that, unlike the sentences in the clauses section, the

predicate declaration does not end with a period. The domains (types) of

109

predicate arguments can be either standard domains or domains declared in the
domains section.

The name of the predicate must begin with a letter, which can be followed
by a sequence of letters, numbers and underscores. The case is irrelevant, but
capital letters should not be used as the first letter of the predicate name. The
predicate name can be up to 250 characters long.

It is forbidden to use a space, minus sign, asterisk and other alphanumeric
characters in the names of predicates. Predicate arguments must belong to
domains known to Visual Prolog. These domains can be either standard domains
or some of those declared in the domains section. That is, if the predicate
my_predicate (symbol, integer) is declared in the predicates section as follows:

predicates
my_predicate (symbol, integer),

it is not necessary to declare domains of its arguments in the domains section
because symbol and integer are standard domains. However, if the same
predicate is declared as follows:

predicates

my_predicate (name, number),

then you must declare that name (character type) and number (integer type)
belong to the standard domains symbol and integer:

domains

name = symbol
number = integer

predicates
my_predicate (name, number).

Domains section. In the traditional Prologue there is only one type -

therm. In Visual Prolog, you must declare the domains of all predicate
arguments. Domains allow you to specify different names for different types of
data, which, otherwise, will look exactly the same. In Visual Prolog programs,
objects in relations (predicate arguments) belong to domains, and these can be
both standard (Table 6.2) and manually described special domains..

Table 6.2. Basic standard domains

Domain Description Realization

short Short, symbolic, quantitative All platforms 16 біт (from -32768 to
32767)

110

ushort Short, unsigned, quantitative All platforms 32 біт (from 0 to 65535)

long Long, significant,
quantitative

All platforms 32 біт (from -
2147483648 to 2147483647)

ulong Long, unsigned, quantitative All platforms 32 біт (from 0 to
4294967295)

integer Significant, quantitative, has
platform-dependent size

All platforms 16 біт (from -32768 to
32767)
platforms 32 біт (from -2147483648 to
2147483647)

unsigne

d

Unsigned, quantitative, has
platform-dependent size

Platforms 16 біт (from 0 tо 65535)
Platforms 32 біт (from 0 to
4294967295)

byte All platforms 8 біт (from 0 to 55)

word All platforms 16 біт (from 0 to 65535)

dword All platforms 32 біт (from 0 tо
4294967295)

Domains of types byte, word and dword are most convenient when

working with machine numbers. Integer and unsigned types are mainly used, as
well as short and long (and their unsigned analogues) for more specialized
applications.

In domain ads, the keywords signed and unsigned can be used in
conjunction with standard byte, word, and dword domains to build new base
domains. For example:

domains

i8 = signed byte

creates a new base domain in the range of -128 to +127. Other base domains are
shown in table.6.3.

Table 6.3. Basic standard domains

Domain Description and implementation

сhar Character implemented as an unsigned byte. Syntactically, it is a symbol,
placed between two single paws: 'a'

real Floating point number implemented as 8 bytes according to the IEEE
agreement; equivalent to the double type in the C language. Valid range
of numbers: from 1x10-307 to 1x10 + 308 (from 1e-307 to 1e + 308). If
necessary, goals are automatically converted to real

111

string A sequence of characters that is implemented as a pointer to a byte array
ending in zero, as in C. Two strings are allowed for strings:
1. A sequence of letters, numbers, and underscores, with the first
character being a lowercase letter.
2. A sequence of characters enclosed in double quotes.
The lines written in the program can reach a length of 255 characters,
while the lines that Visual Prolog reads from a file or builds within itself
can reach (theoretically) up to 4 GB on 32-bit platforms

symbol A sequence of characters implemented as a pointer to an input in an ID
table that stores strings of IDs. Syntax - as for strings

The domains section serves two useful purposes. First, it is possible to

give domains meaningful names, even if internally these domains are similar to
existing standard ones. Second, special domain declarations are used to describe
data structures that are missing from standard domains.

Sometimes it is very useful to describe a new domain - especially when
there is a need to clarify parts of the predicates section. Declaring one's own
domains, by assigning meaningful names to argument types, helps to document
predicates.

An example of how domain declarations help document predicates is:

Frank is a 45-year-old man.

Using the following domains, you can declare the corresponding

predicate:

domains
name, sex = symbol
age = integer

predicates
person (name, sex, age).

Goal section. This section is similar to the body of the rule, ie contains a
list of sub-goals. The goal differs from the rule as follows:

- the keyword goal is not followed by ": -";
- Automatically executes the target when you start Visual Prolog.
This is as if Visual Prolog calls a goal, thus running a program that tries to

solve the body of the goal rule. If all sub-goals in the goal section are true, the
program completes successfully. If any sub-goal from the goal section is wrong,
it is considered that the program is not completed successfully (although
outwardly there is no difference in these cases, the program will simply
terminate its work).

112

Example. Having given Visual Prolog a few facts at once, it is possible to
ask questions about the relationship between them. In natural language, you can
ask the question: Does Bill like football? (Bill loves football?). According to the
rules of the Prologue, this question is as follows: likes (Bill, football). Upon
receiving such a request, Visual Prolog will answer: yes, because Visual Prolog
has a fact that confirms that it is.

Other sections of programs. Facts section. The program on Visual

Prolog is a set of facts and rules. Sometimes in the process of the program there
is a need to modify (change, delete or add) some of the facts with which it
works. In this case, the facts are considered as a dynamic or internal database,
which may change during the execution of the program. To announce the facts
of the program, which are considered part of a dynamic (or variable) database,
Visual Prolog includes a special section – facts.

The facts keyword announces the facts section. It is in this section that it
is possible to announce the facts that are included in the dynamic database.
Visual Prolog has several built-in predicates that make it easier to use dynamic
facts.

Constants section. Visual Prolog programs can declare and use symbolic
constants. The section for declaring constants is denoted by the keyword
constants, followed by the declarations themselves, which use the following
syntax:

<Id> = < Macrodefinitions >

where <Id> is the name of the symbolic constant, and <macrodefinition> is the
value assigned to this constant. Each <macrodefinition> ends with a newline
character and, therefore, there can be only one description of a constant in one
line. The constants declared in this way can later be used in programs.

Example:

constants
zero = 0
pi = 3.141592653

Before compiling, Visual Prolog will replace each constant with the appropriate
string. The following restrictions are imposed on the use of symbolic constants:

- the description of the constant cannot refer to itself:

my_number = 2*my_number/2

113

such a record is not allowed, its use will result in an error message "Recursion
in constant definition" (recursion in the constant description);

- in the descriptions of constants, the system does not distinguish between
upper and lower case. Therefore, when using a constants identifier in a clauses
section, its first letter must be lowercase to avoid confusion between constants
and variables;

- the program may have several sections of constants, but the declaration
of the constant must be made before using it;

- Constant IDs are global and can only be declared once. Multiple
declaration of the same identifier will result in the error message "Constant
identifier can only be declared once" (constant identifier can be declared only
once).

Global sections. Visual Prolog allows you to declare some domains,
predicates, clauses global (not local). This can be done by announcing special
sections in the program global domains, global predicates and global facts.

Variables. In Visual Prolog, variables allow you to write down general
facts and rules and ask general questions. Variable names in Visual Prolog must
begin with a capital letter (or underscore), followed by any number of letters
(uppercase or lowercase), numbers, or underscores. It is convenient to use letters
of different case in the name of a variable. For example:
IncomeAndExpenditureAccount.

In a simple query, you can use variables to find "someone who loves
tennis". For example: likes (X, tennis). In this query, the letter "X" is used as a
variable to find an unknown person.

Meaningful choice of variable names makes the program more readable.
For example, a name:

likes (Person, tennis).

better than

likes (X, tennis).

тому що ім’я «Person» має більше сенсу, ніж «X».

The English sentence "Bill likes the same thing as Kim" can be written on
the Visual Prolog as follows:

likes (bill, Thing):- likes (kim, Thing).

where Thing is a variable.

If you only need certain query information, you can use anonymous
variables to ignore unnecessary values. In Visual Prolog, anonymous variables

114

are denoted by an underscore ("_"). An anonymous variable can be used in place
of any other variable and is never assigned a value.

Anonymous variables can also be used in facts. The following facts of the
Prologue:
eats (_).

could be used to express the following statements in natural language:

Everyone has shoes. (Everyone owns shoes)
Everyone eats. (Everyone eats)

Anonymous variables are compared to any data.
Comments. A good style of programming is to include in the program

comments that explain everything that may be incomprehensible to someone
else (or even the developer of the program, after a while). Multi-line comments
must begin with the characters "/ *" and end with the characters "* /". You can
use either the same characters or start a comment with a percentage character
("%") to set one-line comments.

Matching. Visual Prolog has several examples of comparing one value to
another. It is clear that identical structures can be compared with each other. For
example, it is possible to compare: parent (joe, tammy) with parent (joe,
tammy).

However, a comparison usually uses one or more free variables. For
example, if X is free, then parent (joe, X) can be compared to parent (joe,
tammy) and X will take the value (contact) tammy.

If the variable X is already bound, then it acts in the same way as the
ordinary constant. Thus, if X is related to tammy, then parent (joe, X) can be
compared to parent (joe, tammy), but parent (joe, X) cannot be compared to
parent (joe, millie).

Two free variables can be compared with each other. For example, parent
(joe, X) is compared to parent (joe, Y), linking the variables X and Y. From the
moment of binding, X and Y are treated as one variable, and any change in the
value of one of them leads to an immediate corresponding change in the other.
In the case of such "binding" of several free variables, they are all called
connected free variables.

The Prologue binds variables (with values) in two ways: input and output.
The direction in which the values are transmitted is specified in the flow pattern.
In the future (for brevity) the word "template" will be omitted and the expression
"parameter flow" will be used. When a variable is passed into a sentence, it is
considered an input argument and is denoted by the "and" symbol. When a
variable is returned from a sentence, it is the original argument and is denoted
by the symbol "o".

115

Example 6.2.

1. Create a new project. Specify the base directory and project name
(lab1ex2). Define the purpose of the project. Set the necessary compiler
parameters for the created project.

2. In the file with the extension lab1ex2.pro enter the following program:

predicates
phone_number (symbol, symbol)

clauses
phone_number ("Albert", "222-3665").
phone_number ("Betty", "555-5233").
phone_number ("Carol", "909-1010").
phone_number ("Dorothy", "438-8400").

 goal

The presented listing is a complete program on Visual Prolog, which

serves as a small telephone directory. Because only standard domains are used,
the domains section in this program is not required.

Run the program. Before running the program, in turn, you must add the
following goals (goal section):

- phone_number ("Carol", Number);
- phone_number (Who, "438-8400");
- phone_number ("Albert", Number);
- phone_number (Who, Number).

Change the sentence as follows: Suppose Kim and Dorothy have the same
phone number. Add this fact to the clauses section and enter the target:
phone_number (Who, "438-8400"). Visual Prolog must issue two solutions to
this request:

Who = Dorothy
Who = Kim

 2 Solutions

Task.

1. Implement the programs given in the examples (example 6.1, example
6.2) in Visual Prolog 5.2.

2. Using the acquired skills, write two programs in Prolog. Types of
programs are determined according to the option (Table 6.4). The option number
is determined by the serial number of the student in the teacher's journal.

3. Make a report on the research.

116

 Table 6.4. Task options

№ option Program type 1 Program type 2

1 Address book Laptop catalog
2 Catalog of cars Fare in suburban trains
3 Price list for shoes Catalog of network equipment
4 Catalog of bicycles The cost of bakery products
5 Price list of books Catalog of sports equipment
6 Fabric catalog Price list for candies
7 Price list for stationery Catalog of utensils
8 Catalog of toys Price list for mobile services
9 Price list for computers Power tool catalog
10 Catalog of mobile phones Price list of ties
11 Price list for mobile phones Catalog of films
12 Outerwear catalog Price list for household техніку
13 Price list for vegetables Directory of sites
14 Catalog of monitors Price list of mattresses
15 Price list for medicines Catalog of enterprises
16 Catalog of video cards The cost of tickets to the theater
17 Price list for clothes Music catalog
18 Catalog of audio equipment Price list for TVs
19 Fruit price list Catalog of motorcycles
20 Catalog of TVs Price list for the car
21 Price list for repair work Catalog of watches
22 Catalog of office equipment Price list for toys
23 Fare in minibuses Catalog of flowers
24 Catalog of cameras Price list of fabrics
25 Price list for sporting goods Catalog of paintings

6.8. List of соntrol questions on the task № 4

1. What is the Test Goal utility?
2. How to solve a problem in Prolog?
3. What is usually a program in Prolog?
4. Name the most important feature of the Prologue language.
5. What sections does a Visual Prolog program usually consist of?
6. What is placed in the section of sentences?
7. Define the terms "fact", "rule" and "title".
8. Explain the meaning of the combination of characters ": -".
9. What is placed in the section of predicates?
10. Name the rules for declaring predicates.
11. Name the rules for naming predicates.

117

12. List the main domains in Visual Prolog.
13. Explain when to declare domains of predicate arguments and when

not.
14. How is a goal different from a rule?
15. What is the facts section used for?
16. Name the restrictions imposed on the use of constants.
17. What are global sections used for?
18. Name the rules for naming variables in the Prologue.
19. Name the purpose of anonymous variables.
20. Name the rule for naming anonymous variables.
21. How to comment on a line or part of the program in the Prologue?
22. Give an example of comparing one value with another.
23. In which case the variables are called conjugate free variables.

6.9. Task № 5. Unification and search with return

Comparison and unification

The process that Visual Prolog uses when trying to map a call (from a
sub-goal) to a sentence (in the clauses section of the program) involves
associating a particular call with a specific sentence – what is called unification.
In the Prologue, unification implements procedures of more traditional
languages – such procedures as parameter transfer, case selection, structure
creation, structure access, assignment.

Consider the program shown in example 6.3 in terms of how the utility
Test Goal will look for all solutions to the following goal: written_by (X, Y).
Trying to execute the target statement written_by (X, Y), Visual Prolog must
check each sentence written_by in the program. Comparing the arguments X and
Y with the arguments of each sentence written_by, Visual Prolog performs a
search from the beginning of the program to its end. Once it finds a sentence that
matches the target statement, Visual Prolog assigns values to the free variables
so that the target statement and the sentence become identical, in which case it is
said that the target statement is unified with the sentence. This mapping
operation is called unification.

Example 6.3.

domains

title, author = symbol
pages = unsigned

predicates
book (title, pages)
written_by (author, title)
long_novel (title)

clauses

118

written_by (fleming, "DR NO").
written_by (melville, "MOBY DICK").
Book ("MOBY DICK", 250).
Book ("DR NO", 310).
long_novel (Title):-

written_by (_, Title),
book (Title, Length),
Length> 300.

Since X and Y are free variables in the target statement, and the free

variable can be unified with any other argument (and even with another free
variable), the target statement can be unified with the first sentence written_by
in the program, as shown below:

written_by (X, Y).
 ↕ ↕

written_by (fleming, "DR NO").

Visual Prolog establishes a match, X becomes associated with fleming,
and Y - with "DR NO". At this point, Visual Prolog prints:

X = fleming, Y = "DR NO"

Since Test Goal seeks all solutions for a given goal, the goal statement

will also be unified with the second sentence written_by:
written_by (melville, "MOBY DICK").

So Test Goal also prints a second solution:

Х = melville, Y = "MOBY DICK"
2 Solution

Assume that the program is given a target statement written_by (X,
"MOBY DICK"). Visual Prolog will match the first sentence written_by:

written_by (X, "MOBY DICK").

↕ ↕
written_by (fleming, "DR NO").

Since "MOBY DICK" and "DR NO" do not match, the unification attempt fails.
Then Visual Prolog will check the following fact in the program:

written_by (melville, "MOBY DICK").

119

This fact is really unified, and X becomes associated with melville.
Consider how Visual Prolog fulfills the following target statement:

long_novel (X).

When Visual Prolog tries to execute a target statement, it checks to see if

the request can really match the fact or title of the rule. In our case
correspondence with long_novel (Title) is established. Visual Prolog checks the
sentence for long_novel, trying to complete the match by unifying the
arguments. Since in the objective statement X is a free variable, it can be unified
with any other argument. The title is also not related in the title of the
long_novel sentence. The target statement matches the title of the rule, and
unification is performed. Eventually, Visual Prolog will try to reconcile the sub-
goals with the rule:

long_novel (Title):-

written_by (_, Title),
book (Title, Length),
Length> 300.

Trying to match the body of the rule, Visual Prolog will refer to the first

sub-goal in the body of the rule – written_by (_, Title). Because the authorship
of the book is insignificant, an anonymous variable (_) appears in place of the
"author" argument. The appeal written_by (_, Title) becomes the current sub-
goal, and the Prologue seeks a solution to this appeal.

The prologue seeks correspondence with this sub-goal from the top to the
end of the program. As a result, unification is achieved with the first fact for
written_by, namely:

written_by (_, Title),
 ↕ ↕

written_by (fleming, "DR NO").

The variable Title is associated with "DR NO", and by the next sub-goal

book (Title, Length) the call is already performed with this value of the variable.
Next, Visual Prolog begins the next search process, trying to match the

reference to the book. Since the Title is related to "DR NO", the actual address
looks like a book ("DR NO", Length). The search process starts again from the
top of the program. In this case, it should be noted that the first attempt to match
the sentence book ("MOBY DICK", 250) will fail, and Visual Prolog will move
to the second sentence book in search of a match. In the second sentence, the
title of the book corresponds to the sub-goal, and Visual Prolog associates the
variable Length with the value 310.

120

Now the third sentence in the body long_novel becomes the current
subgoal:

Length> 300.

Visual Prolog performs a comparison that completes successfully: 310 is

greater than 300. At this point, all subgoals in the rule body are met, and
therefore the long_novel (X) call is successful. Because the X in the request was
unified with the Title variable in the rule, the value that the Title associates with
when confirming the rule is returned and unified with the X variable. :

X = "DR NO"
1 Solution.

Search with return

Visual Prolog uses the trial and return method to find a solution to a

problem. This method is called return search. If, when starting to search for a
solution to a problem (or target statement), Visual Prolog has to choose between
alternative paths, it puts a marker at the branch point (called the rollback point)
and selects the first subgoal to test. If this goal is not met, Visual Prolog will
return to the rollback point and try to check another sub-goal. Example 6.4
discusses a simple program that uses Test Goal.

Example 6.4.

predicates

likes (symbol, symbol)
tastes (symbol, symbol)
food (symbol)

clauses
likes (bill, X):-

food (X),
tastes (X, good).

tastes (pizza, good).
tastes (brussels_sprouts, bad).
food (brussels_sprouts).
food (pizza).

The rule of the likes states that Bill loves good food. To see how the

return search works, let's introduce the following target statement to the
program:

121

likes (bill, What).

Warning! When Prolog tries to match the target statement, it will start the

search from the top of the program.
In this case, the Prologue will look for a solution, conducting from the top

of the program to match the sub-goal likes (bill, What). It matches the first
sentence in the program and the variable "what" is unified with the variable X. A
mapping to the rule header causes Visual Prolog to try to satisfy this rule. In
doing so, he moves along the body of the rule and turns to the first sub-goal that
is in it: food (X).

Warning! If a new request is executed, matching for that request starts
again from the top of the program.

In an attempt to reconcile the first sub-goal, Visual Prolog (starting at the
top) compares each fact or title with the rules it encounters in the program. It
matches the query in the first fact represented by the food relation. Thus, the
variable X is associated with the value of brussels_sprouts. Because there is
more than one possible response to the food (X) request, Visual Prolog places a
return point (marker) next to the food (brussels_sprouts) fact. This return search
point indicates where the Prologue will start searching for the next possible
match for food (X).

Warning! When the matching is successful, it is said that the return is
returned, and another sub-goal can be tested.

Because variable X is associated with brussels_sprouts, the following call
will be performed as follows:

tastes (brussels_sprouts, good)

and Visual Prolog will start searching from the top of the program again, trying
to reconcile this appeal. As the corresponding sentences are not found, the
appeal fails, and now Visual Prolog starts the return mechanism. Starting the
search with the return, the Prologue retreats to the last position where the
rollback point was set. In this case, the Prologue returns to the fact:

food (Brussels_sprouts).

Warning! The only way to release a variable that is once associated with

a sentence is to roll back when searching with a return.
When Prolog retreats to the return point with a return, it releases all

variables associated after that point and will look for another solution for the
original appeal. The appeal was food (X), so the connection of brussels_sprouts
with X is canceled. Now the Prologue is trying to find a solution for this appeal

122

again. It corresponds to the fact of food (pizza). This time the variable X is
associated with the value of pizza.

The prologue goes to the next sub-goal in the rule, while having a new
related variable. A new appeal is generated, tastes (pizza, good), and the search
begins (again from the top of the program). This time the match is found and the
target statement is successfully executed.

Because the What variable in the target statement is unified with the X
variable in the likes rule, and the X variable is associated with the pizza value,
the What variable is now associated with the pizza value, and Visual Prolog

displays the solution:

 What = pizza
1 Solution

There are four basic rules for returning search:
- sub-goals must be agreed in order, from top to bottom;
- predicative sentences are checked in the order in which they appear in

the program, from top to bottom;
- when the goal corresponds to the title of the rule, the body of this rule

must be agreed next: the body of the rule now forms a new set of sub-goals for
coordination;

- the target statement is considered consistent when the relevant fact is
found for the target tree leaf.

1. Performing sub-goals, Visual Prolog begins the search with the first
sentence defining the predicate. Then one of two things can happen: 1. Visual

Prolog finds the appropriate sentence, then:
- if there is another sentence that may reconcile the sub-goal, Visual

Prolog sets a marker (to indicate the return point) and associates all free
variables in the sub-goal (which correspond to the values in the sentence) with
the corresponding values;

- if the given sentence is the title of the rule, then the body of this rule is
evaluated.
 The sub-goals in the body of the rule must be met for the successful
completion of the appeal.

2. Visual Prolog cannot find the corresponding sentence. The target
statement is inconsistent, and Visual Prolog performs a return search in an
attempt to reconcile the previous subtask. When the process reaches the last
return point, Visual Prolog releases all variables that have been assigned new
values (after the return point has been set), and tries to reconcile the original
request again.

Visual Prolog starts the search from the top of the program. When it
returns to the appeal, the new search process begins with the last set rollback
point. If the search is unsuccessful, the return search is performed again. If the

123

return search process has exhausted all sentences for all sub-goals, it means that
the target statement is not consistent.

Solution management

The built-in search engine with return in the Prologue can lead to finding
unnecessary solutions, resulting in lost efficiency (for example, when it is
desirable to find only one solution). In other cases, it may be necessary to
continue to seek additional solutions, even if the target statement has already
been agreed.

The prologue provides two tools that allow you to control the return
search engine:

- the fail predicate, which is used to initialize the return search;
- predicate cut or clipping (denoted by the symbol "!") – to prohibit the

possibility of return.

Use the predicate fail

The prologue starts the search with a return when the call fails. The
language supports a special fail predicate, which causes a failed completion, and
initials a return. The action of the fail predicate is equivalent to the effect of
comparing 2 = 3 or another impossible sub-goal. Example 6.5 illustrates the use
of this special predicate.

Example 6.5.

domains
name = symbol

predicates
father (name, name)
everybody

clauses
father (leonard, katherine).
father (carl, jason).
father (carl, marilyn).

everybody:-

father (X, Y),
write (X, "is", Y, "'s father\n"),
fail.

Let's find all the solutions to everybody's goal. Using the Test Goal utility,
you can record a goal as follows:

goal

everybody.

124

Test Goal will find all solutions to everybody's goal and display the
following:

leonard is katherine's father
carl is jason's father
carl is marilyn's father
no

When compiling the program, Visual Prolog will find only the first

suitable solution for father (X, Y). After the goal statement defined in the goal
section has been fulfilled for the first time, nothing tells the Prologue about the
need to continue the search with a return. Therefore, appealing to the father will
lead to only one decision. The everybody predicate in the program uses fail to
support return searches. Everybody's task is to find all the solutions for the
father and give a complete answer.

Fail cannot be reconciled (it is always unsuccessful), so Prolog is forced
to repeat the search with a return. When searching with a return, it returns to the
last request, which can give multiple solutions. This treatment is called
indeterminate. It is the opposite of a deterministic appeal that can only give one
solution.

It is not necessary to place subgoals after fail in a rule body. The fail
predicate fails all the time, there is no way to achieve the subgoal located after
fail.

Interrupt search with return

The Prolog provides a clipping capability that is used to interrupt the
return search. The clipping is indicated by an exclamation mark ("!"). The
clipping is simple: it is impossible to roll back (search with return).

The clipping is placed in the program in the same way as the subgoal in
the rule body. When the process passes through the clipping, the appeal to the
cut is immediately satisfied and the appeal to the next sub-goal is performed (if
any). After passing through the clipping, it is no longer possible to roll back to
the sub-goals that are located in the processed sentence before the clipping, and
it is impossible to return to other sentences that define the predicate to be
processed (predicate containing clipping).

There are two main uses for clipping:
-I f it is known that certain links will never lead to meaningful decisions

(clipping is applied), the program becomes faster and more economical. This
technique is called green clipping.

- if the clipping is required by the logic of the program itself to exclude
alternative sub-goals. This is a red clipping.

Prevent the search from returning to the previous sub-goal in the rule

125

r1:- a, b,

!,
c.

Such a record is a way to inform the Prologue that the first solution he

found for subgoals a and b is sufficient. Having the ability to find multiple
solutions to "c" by searching with return, Prolog can not roll back (search with
return) through clipping and find an alternative solution to appeals "a" and "b".
He also cannot return to another sentence that defines the predicate r1. As an
example, consider the program shown in example 6.6.

Example 6.6.

predicates
buy_car(symbol,symbol)
car(symbol,symbol,integer)
colors(symbol,symbol)

clauses
 buy_car(Model,Color):-

car(Model,Color,Price),
colors(Color,best),
!,
Price < 25000.

car(maserati,green,25000).
car(corvette,black,24000).
car(corvette,red,26000).
car(porsche,red,24000).
colors(red,best).
colors(black,mean).
colors(green,preppy).

goal
buy_car(corvette,Y).

 In this example, the goal is to find a corvette (Corvette) of a pleasant
color (best), with a suitable price. Clipping in the buy_car rule means that since
the database contains only one nicely colored Corvette, albeit at a very high
price, there is no need to look for another car.

After receiving the target statement buy_car (corvett, Y) the program will
perform the following steps:

1. The Prolog refers to car, the first subgoal for the predicate buy_car.
2. Performs a test for the first machine, Maserati, which fails.
3. Then check the following car sentences and find a match by associating

the Color variable with the value black.

126

4. Proceed to the next request and check whether the selected machine has
a pleasant color. Black is not pleasant in this program, so the test fails.

5. Performs a car return search and searches again for a Corvette that
satisfies this criterion.

6. Finds the match and checks the color again. This time the color is nice.
The prologue goes to the next sub-goal in the rule: to clipping. Clipping is
performed immediately, "freezing" all variables previously associated in this
sentence.

7. Moves to the next (and last) sub-goal in the rule, to compare Price
<25000.

8. The test fails, and Visual Prolog tries to do a return search to find
another machine to test. Clipping prevents an attempt to solve the last sub-goal,
and the target statement fails

Prevent search by returning to the next sentence

Clipping can be used as a way to tell Visual Prolog that it has chosen the
correct sentence for a particular predicate. For example, consider the following
fragment of the program:

r (1):-

!,
a, b, c.

r (2):-
!,
d.

r (3):-
!,
c.

r (_):-
write ("This is a catchall clause.").

The use of clipping makes the predicate "r" deterministic. In this case, the

Prologue appeals to "r" with a single integer argument. Assume that r (1) is
used. Visual Prolog scans the program for matching matches. It corresponds to
the first sentence defined for "r". Because there is more than one possible
solution to this sentence, Visual Prolog puts a return point next to this sentence.
Now the Prologue begins processing the body of the rule, goes through the
clipping and eliminates the possibility of returning to another sentence "r". This
eliminates return search points, improving program performance, and ensures
that a sentence that catches errors will only be executed if none of the conditions
match the "r" statement. As another example, consider the program shown in
example 6.7.

127

Example 6.7.

predicates
friend (symbol, symbol)
girl (symbol)
likes (symbol, symbol)

clauses
friend (bill, jane):-

girl (jane),
likes (bill, jane),
!.

friend (bill, jim):-
likes (jim, baseball),
!.

friend (bill, sue):-
girl (sue).

girl (mary).
girl (jane).
girl (sue).
likes (jim, baseball).
likes (bill, sue).

goal
friend (bill, Who).

If there was no clipping, the Prologue would suggest two solutions: "Bill
is a friend of both Jim and Sue." However, the clipping in the second sentence,
which defines friend, suggests that if this sentence is agreed, then Bill's friend
has already been found, and there is no need to continue searching for other
candidates.

Determinism and clipping

If the friend predicate defined in Example 6.7 did not contain clippings, it
would be a nondeterministic predicate (capable of issuing multiple solutions
using a return search). The prologue checks for indeterminate sentences itself.

In Visual Prolog, there is a compiler directive check_determ. If you add
this directive to the beginning of the program, the Prologue will issue a warning
if undetermined sentences are detected during compilation. It is possible to
convert non-deterministic sentences into deterministic ones, this can be done by
inserting clippings into the body of the rules that define this predicate.

Predicate not

The program in Example 6.8 demonstrates how the predicate not can be
used to identify the student with the best grade: that is, the student who has a
GPA of at least 3.5 and who is not currently on probation.

128

Example 6.8.
domains

 Name = symbol
 GPA = real

predicates
 honor_student(Name)
 student(Name,GPA)
 probation(Name)

clauses
 honor_student(Name):-
 student (Name, GPA),
 GPA>=3.5,
 not(probation (Name)).
 student("Betty Blue", 3.5).
 student("David Smyth", 2.0).
 student("John Jonson", 3.7).
 probation("Betty Blue").
 probation("David Smith").

goal
 honor_student(X).

Warning! The predicate not will be successful if the truth of this

subgoal cannot be proved.

This prevents binding inside unbound variables. When calling a sub-target
with free variables from within, Visual Prolog will return an error message:
"Free variables not allowed in not or retractall". This is due to the fact that to
bind free variables in a sub-goal, the sub-goal must be unified with some other
sentence and executed. The correct way to manage incoherent subgoal variables
inside not is to use anonymous variables.

Here are some examples of correct and incorrect sentences:

likes (bill, Anyone):- % Anyone – initial argument
 likes (sue, Anyone),

not (hates (bill, Anyone)).

In this example, Anyone connects with likes (sue, Anyone) before the

Prologue concludes that hates (bill, Anyone) is not true. This sentence will work
correctly.

If you change the sentence so that you do not call first, you will get an
error message: "Free variables not allowed in not".

Приклад:
likes (bill, Anyone):- % This will not work properly

129

not (hates (bill, Anyone)),
likes (sue, Anyone).

Even if you replace any (hates (bill, Anyone)) Anyone with an

anonymous variable, and the sentence will thus not return an error, the wrong
result will still be displayed. Example:

likes (bill, Anyone):- % This will not work properly

not (hates (bill, _)),
likes (sue, Anyone).

This sentence states that Bill is liked by anyone, if nothing is known about

whom Bill hates, and if this "someone" is liked by Sue. The real sentence was
that Bill liked someone who liked Sue, and Bill didn't hate that man.

Tasks

1. Implement the programs given in the examples (example 6.3 - example
6.8) in Visual Prolog 5.2.

2. For programs created in the course of task № 4 implement the
following predicates:

2.1. Output of all records.
2.2. Search for all records that satisfy the condition.
2.3. Search for the first record that does not satisfy the condition.
3. Make a report on the research.

6.10. List of соntrol questions on the task № 5

1. Define the concept of "unification" and explain the process of
unification of the target statement with the sentence.

2. Explain the essence of the search method with return.
3. Explain why the return search point is used.
4. Name the basic rules of search with return.
5. Explain the mechanism of sub-goals.
6. Name the tools for managing the return search engine.
7. Name the main cases when cutting is used.
8. Explain how to turn non-deterministic sentences into deterministic ones

in the Prologue.

6.11. Task №6. Cycle and recursion

Visual Prolog has no For, While, Repeat constructs. There is no direct

way to express repetition. The prologue provides only two types of iterations –

130

rollback, which searches for many solutions in one query, and recursion, in
which the procedure calls itself. Visual Prolog recognizes a special recursion
case, namely tail recursion, and compiles it into an optimized iterative loop.

Visual Prolog can express iterations in both procedures and data
structures. Prolog allows you to create data structures whose size is not known at
the time of creation.

 Using rollback with loops

A return search is a good way to find all possible solutions to a target
statement. Even if the problem does not have many solutions, you can use return
search to perform iterations. To do this, determine the predicate with two
sentences:

repeat.
repeat:- repeat.

This technique demonstrates the creation of a management structure of the

Prologue, which generates an infinite number of decisions. The purpose of the
repeat predicate is to allow infinity of search with return (infinite number of
rollbacks). Example 6.9 demonstrates the use of repeat to save entered
characters and print them until the user presses the <Enter> key.

Example 6.9.

predicates
repeat
typewriter

clauses
repeat.
repeat:- repeat.
typewriter:-

repeat,
readchar (C), Read the symbol, assign its meaning to C
write (C),
C = '\r', Carriage return (Enter) or failure symbol!.

goal
typewriter (), nl.

The program shown in example 3.1 shows how repeat works. The

typewriter rule: describes the process of receiving characters from the keyboard
and displaying them on the screen until the user presses the <Enter> key.

The typewriter rule works as follows:
1. Executes repeat (which does nothing but puts a rollback point).
2. Assigns a character value to the variable C.

131

3. Displays C.
4. Checks that C corresponds to the carriage return code.
5. If so, then – completion. If not, return to the rollback point and look for

alternatives. Since neither write nor readchar are alternatives, there is a constant
return to repeat, which always has alternative solutions.

6. Processing progresses: the program reads the next character, displays it
and checks for compliance with the return code of the carriage.

Warning! All variables lose their values when processing rolls back to

the position preceding the predicate calls that set those values.

Recursive procedures

Another way to organize repetitions is recursion. A recursive procedure is
a procedure that causes itself. In a recursive procedure, there is no problem with
remembering the results of its execution, because any calculated values can be
passed from one call to another as arguments of a predicate that is recursively
called.

For example, you need to find the factorial of the number N: if N is 1,
then the factorial is 1, otherwise find the factorial N-1 and multiply it by N. To
find factorial 3, you need to find factorial 2, and to find factorial 2, you need to
calculate factorial 1 Factorial 1 can be found without referring to other factors,
so repetitions will not begin. If we have a factorial of 1, then we need to
multiply it by 2 to get a factorial of 2, and then multiply the result by 3 to get a
factorial of 3.

In Visual Prolog, it looks like this:

factorial (1, 1):-! .
factorial (X, FactX):-

Y = X-1,
factorial (Y, FactY),
FactX = X * FactY.

The full implementation of this approach to the task is presented in example
6.10.

Example 6.10.
/ * Recursive program for calculating factors. Recursion is normal, not

tail. * /
predicates

factorial (unsigned, real)
clauses

factorial (1,1):-

132

!.
factorial (X, FactX):-

Y = X-1,
factorial (Y, FactY),
FactX = X * FactY.

goal
X = 3,
factorial (X, FactX).

How does a computer execute a factorial predicate in the middle of

factorial predicate processing? The fact is that the computer creates a new copy
of the predicate factorial in such a way that factorial becomes able to call itself
as a completely independent procedure. Of course, the execution code will not
be copied, but all arguments and intermediate variables are copied.

The information is stored in an area of memory called the stack frame, or
simply the stack that is created each time a rule is called. When the rule is
executed, the memory occupied by its stack frame is freed (unless it is a non-
deterministic rollback), and execution continues in the stack frame of the parent
rule.

Advantages of recursion

Recursion has three main advantages:
- it can express algorithms that cannot be conveniently expressed in any

other way;
- it is logically simpler than the iteration method;
- it is widely used in list processing.
Recursion is a good way to describe tasks that include tasks of the same

type. For example, a search in a tree (a tree consists of smaller trees) and
recursive sorting (to sort a list, it is divided into parts, the parts are sorted and
then combined together).

Tail recursion optimization

Recursion has one major drawback – it "eats" memory. Each time one
procedure calls another, information about the execution of the calling
procedure must be saved so that the calling procedure can resume execution
after the execution of the called procedure at the same place where it stopped.
This means that if the procedure calls itself 100 times, then 100 different states
must be written simultaneously (decision execution states are stored in the stack
frame).

Consider a special case where the procedure can cause itself without
saving information about your condition. Assume that the procedure is called for
the last time, ie when the called procedure terminates, the calling procedure will
not resume its execution. This means that the calling procedure does not need to

133

save its state, because this information is no longer needed. As soon as the called
procedure is completed, the processor should go in the direction specified for the
calling procedure after its execution.

For example, suppose that procedure A calls procedure B and B calls C as
its last step. When B causes C, B should do nothing more. Therefore, instead of
storing information about the current state C in the procedure stack, it is
necessary to rewrite the old saved information about the state B (which is no
longer needed) to the current information about C, making appropriate changes
to the stored information. When C finishes execution, it will assume that it is
called directly by procedure A.

Assume that in the last step, procedure B calls itself instead of procedure
C. It turns out that when B calls B, the stack (state) for calling B must be
replaced by the stack for called B. This is a very simple operation, the arguments
are simply assigned new values and then the process returns to the beginning of
procedure B. Therefore, from a procedural point of view, what is happening is
very similar to just updating the control variables in the loop.

This operation is called tail recursion optimization or last call
optimization. Last call optimization is not applicable to recursive functions.

How to set tail recursion

In the Prologue, the phrase "one procedure calls another in its last step"
means:

- challenge is the last sub-goal of the sentence;
- previously there were no return points in the sentence.
The following is an example that satisfies both conditions:

count (N):-
write (N), nl,
NewN = N + 1,

count (NewN).

This procedure is a tail recursion that calls itself without reserving a new
stack frame, and therefore does not deplete memory. As shown in the program
shown in example 6.11, if it is given the target statement "count (0)." then the
count predicate will print integers starting with 0 and will never stop. Eventually
there will be an integer overflow, but a stop due to memory depletion will not
occur.

Example 6.11.

/* A program with tail recursion that does not deplete memory */
predicates

count (ulong)
clauses

134

count (N):-
write ('\r', N),
NewN = N + 1,
count (NewN).

goal
nl,
count (0).

Tail recursion is not optimized

Three erroneous ways to organize tail recursion:
1. If a recursive call is not the last step, the procedure is not a tail

recursion. Example:

badcount1 (X):-
write ('\ r', X),
NewX = X + 1,
badcount1(NewX),
nl.

Each time badcount1 calls itself, the stack must be saved so that

processing can be returned to the calling procedure, which must be performed
before nl. Therefore, it will make only a few thousand recursive calls before the
end of free memory.

Another way to make tail recursion not optimized is to leave some
possible alternative untested until the recursive call is executed. The stack must
then be saved, because if the recursive call fails, the calling procedure may roll
back and start testing this alternative. Example:

badcount2 (X):-

write ('\r', X),
NewX = X + 1,
badcount2 (NewX).

badcount2 (X):-
X <0,
write ("X is negative.").

The first sentence badcount2 calls itself, while the second sentence is not

yet executed. Again, the program runs out of memory after a certain number of
calls.

To lose the optimization of tail recursion, it is not necessary to have an
untested alternative as a separate sentence of the recursive procedure. An
untested alternative can be in any called predicate. Example:

135

badcount3 (X):-
write ('\ r', X),
NewX = X +1,
check (NewX),
badcount3 (NewX).

check (Z):- Z >= 0.
check (Z):- Z < 0.

Assume that X is a positive value. When badcount3 calls itself, the first

check sentence reaches the goal, and the second check sentence has not yet been
checked. Therefore, badcount3 must keep a copy of its stack frame to be able to
go back and start checking the second check sentence in case the recursive call
fails (example 6.12).

Example 6.12.

% In a 32-bit architecture, these examples will run long enough to take
% a lot of memory and significantly reducing the overall performance of

the system.
predicates

badcount1 (long)
badcount2 (long)
badcount3 (long)
check (long)

clauses
% badcount1: recursive call is not the last step

badcount1 (X):-
write ('\r', X),
NewX = X+1,
badcount1 (NewX),
nl.

% badcoun2: it is a sentence that is not executed during

implementation

 % recursive call
badcount2 (X):-

write ('\r', X),
NewX = X + 1,
badcount2 (NewX).

badcount2 (X):-
X <0,
write ("X is negative.").

% badcount3: untested alternative to the procedure that

 % called before recursive call.
badcount3 (X):-

136

write ('\ r', X),
NewX = X +1,
check (NewX),
badcount 3 (NewX).

check (Z):-
Z >= 0.

check (Z):-
Z < 0.

It should be noted that badcount2 and badcount3 are worse than
badcount1 because they generate return points. Clipping allows you to discard
all possible unnecessary alternatives. To set the cut, you must use the compiler
directive check_determ.

You can fix badcount3 as follows (by modifying its name):

cutcount3 (X):-

write ('\r', X),
NewX = X +1,
check (NewX),
!,
cutcount3 (NewX).

"Clipping" is also effective in badcount2 if you move the test from the

second sentence to the first:

cutcount2 (X):-
X>= О,
!,
write ('\r', X),
NewX = X + 1,
cutcount2 (NewX).

cutcount2 (X):-
write ("X is negative.").

Clipping is used whenever we are not interested in alternatives. In the

original version of the previous example, the second sentence had to leave a
choice because the first sentence did not contain an X test. By moving the test to
the first sentence and denying it, a decision can be made there and the cutoff set
according to the statement: "Now I know I should not write that X is negative.

The same goes for cutcount3. The check predicate shows the situation
when it is necessary to perform some additional operation on X based on the
sign. However, the code for check is indeterminate, and clipping after calling it

137

is all that needs to be done. However, the above is a bit artificial - it might be
better for the check to be deterministic:

check (Z): -

Z> = 0,
!,
... % using Z

check (Z):-
Z <0,
... % using я Z

Check in the second sentence check - complete denial of check in the first, so
check can be rewritten as:

check (Z):-

Z >= 0,
!,
 ...

If clipping is performed, the computer assumes that there are no untested
alternatives and does not create a stack frame. The program shown in example
6.13 contains modified versions of badcount2 and badcount3.

Example 6.13.

/* Shows how badcount2 and badcount3 can be improved by declaring a
cut to exclude unverified sentences. These versions use optimized tail recursion..
*/

predicates
cutcount2 (long)
cutcount3 (long)
check (long)

clauses
cutcount2 (X):-

X >= 0,
!,
write ('\r', X),
NewX = X + 1,
cutcount2 (NewX).

cutcount2 (_):-
write ("X негативно.").
cutcount3 (X):-
write ('\r ', X),
NewX = X + 1,
check (NewX),
cutcount3 (NewX).

138

check (Z):- Z >= 0.
check (Z):-Z <0.

Unfortunately, clipping will not help with badcount1, in which the need to

copy stack frames is not associated with untested alternatives. The only way to
improve badcount1 is to do the calculation so that the recursive call occurs at the
end of the sentence.

Using arguments as loop variables

Consider a small transformation from Pascal to Prolog. In the section
"Recursive procedures" the calculation of the factorial using a recursive
procedure was demonstrated. Another way to calculate the factorial is to use
iteration for this. In Pascal it would look like this:

Р: = 1;
for І: = 1 to N do P: = Р *І;
FactN: = P;

The ": =" operator is an assignment operator and is pronounced as

"assign". 4 variables were used. N is the number whose factorial will be
calculated; FactN – the result of the calculation; And - cyclic variable (from 1 to
N), P – summing variable.

The first step in translating to Prolog is to replace it with a simpler
wording for the loop, which more accurately defines what happens to I at each
step. The while definition is used for this:

Р: = 1; /* Initialization «Р» and «І» */
І: = 1;
while I <= N do /* Cycle assignments */

begin
Р: = Р * І / * Renewal «Р» and«I» */
I: = І + 1

end;
FactN: = P; / * Show result * /

The program shown in example 6.14 shows the Pascal while loop

translated into Prolog.

Example 6.14.

predicates
factorial (unsigned, long)
factorial_aux (unsigned, long, unsigned, long)

% Numbers that are likely to become larger are announced long.

139

clauses
factorial (N, FactN):-

factorial_aux (N, FactN, 1,1).
factorial_aux (N, FactN, I, P):-

I <= N,
!,
NewP = P * I,
Newl = I +1,
factorial_aux (N, FactN, Newl, NewP).

factorial_aux (N, FactN, I, P):-
I> N,
FactN = P.

Consider the program in more detail. There are only two arguments in the

sentence for the factorial predicate – N and FactN. They are the "entrance" and
the "exit" from the point of view of the one who calculates the factorial.
Sentences for factoriai_aux (N, FactN, I, P) actually provide recursion. Their
arguments are four variables that must be passed from one step to another.
Therefore, factorial simply calls factorial_aux, passing it N and FactN with
initial values for I and P:

factorial (N, FactN):-

factorial_aux (N, FactN, 1, 1).

So I and P are initialized. But how does factorial convey FactN, since it
doesn't matter yet? The answer is that conceptually Visual Prolog here unifies a
variable called FactN in one sentence with a variable called FactN in another
sentence. In the same way, factoriai_aux passes itself to FactN as an argument in
a recursive call. Eventually, the last FactN will get the value, and then all other
FactNs that are unified with it will get the same value. "Conceptually", because
in reality there is only one FactN. Visual Prolog can determine from the source
code that FactN is not actually used before the second sentence factorial_aux,
and the same FactN is passed all the time.

Now about the work of factorial_aux. Usually this predicate checks the
sentence "I is less than or equal to N" for cyclic calculation, and then recursively
calls itself with new values for I and P. Here is another feature of Visual Prolog.
In Prologue, the arithmetic expression is correct: p = p + 1 is not a definition of
assignment (as it should be in most other programming languages).

Warning! You cannot change the value of a variable in Visual Prolog

In the Prologue it is as absurd as in algebra. Instead, you need to create a

new variable and give it the value you want. Example:

140

NewP = Р + 1
Therefore, the first sentence is as follows:

factorial_aux (N, FactN, I, P):-
I <= N,
!,
NewP = P * I,
Newl = І +1,
factorial_aux (N, FactN, Newl, NewP).

As in the case of cutcount2, in this sentence the clipping will optimize the
tail recursion, although it is not the last sentence in the predicate. Ultimately I
will exceed N; the current values of P and FactN are unified and recursion stops.
This is realized in the second sentence, which is executed when the check I <=
N in the first sentence is unsuccessful.

factorial_aux (N, FactN, I, P):-

I > N,
FactN = P.

factorial_aux (_, FactN, _, FactN).
Task

1. Implement the programs given in the examples (example 6.9 - example
6.14) in Visual Prolog 5.2.

2. Using the acquired skills, according to the option, write a program in
the language of Prolog, which implements calculations according to the formula
shown in table 3.1. The option number is determined by the serial number of the
student in the teacher's journal.

Table 6.5. Task options

№
option

Formula

1))sin((
1

n

i

iim

2)cos(/
1

m

k

kkr

3)1cos(/)sin(
1

k

s

ssv

141

4 ttg
k

t

*)3(
1

5))cos(/1(
1

jja
l

j

6))cos(/)sin((
1

iiif
n

i

7

k

s

ssb
1

)cos(1/(

8

r

f

ffq
1

)3/()2(

9

k

p

pph
1

))sin(*2(

10

z

x

xxxw
1

/)*2(

11

m

i

iin
1

))cos()(sin(

12

k

s

ssc
1

/)10(

13))2/(1(
1

b

a

aat

14

m

n

nnp
1

)1)sin(/(

15

f

c

ccb
1

))sin(/32/)(cos(

16

n

m

m
emv

1

1)(

17

m

n

nny
1

)5/)sin()(cos(

18

b

a

aa
ex

1

|)cos()sin(|

142

19

c

b

ccz
1

5/)cos(*)sin(

20

z

h

hhu
1

3/|)sin(|

21 2/)(
1

)sin()cos(

k

i

ii
eer

22

k

j

hhw
1

|)2sin(|

23

l

k

l
eln

1

)sin()cos(

24

h

s

ssssk
1

))cos(*)/(sin())sin()(cos(

25

n

i

i
eif

1

)2cos(*)sin(

3. According to the variant of the task (table 6.6), write the program in

the Prologue language. The option number is determined by the serial number
of the student in the teacher's journal.

Table 6.6. Task options

№

option
Task

Additional

requirements

1

Calculate the sum of n terms of the
arithmetic progression *. The program must
calculate a series from the smallest member
of the progression to the larger.

n=10, d=3, а1=1

2

Derive n members of the increasing
geometric progression **. The program
should display a series from the larger
member of the progression to the smaller.

n=8, q=2, b1=15

3

Print n members of the arithmetic
progression *. The program should display a
series from the larger member of the
progression to the smaller.

n=20, d=2, а1=5

4

Calculate the sum of n terms of the
geometric progression **. The program
must calculate a series from the smallest

n=5, q=3, b1=1

143

member of the progression to the larger.

5

Calculate the sum of n terms of the
arithmetic progression *. The program must
calculate a series from the larger member of
the progression to the smaller.

n=7, d=5, а1=15

6

Derive n members of the increasing
geometric progression **. The program
should output a series from the smallest
member of the progression to the larger.

n=5, q=5, b1=2

7

Print n members of the arithmetic
progression *. The program should display a
series from the larger member of the
progression to the smaller.

n=20, d=2, а1=5

8

Calculate the sum of n terms of the
increasing geometric progression **. The
program must calculate a series from the
larger member of the progression to the
smaller.

n=10, q=2, b1=10

9

Calculate the sum of n terms of the
arithmetic progression *. The program must
calculate a series from the smallest member
of the progression to the larger.

n=15, d=4, а1=3

10

Derive n members of the increasing
geometric progression **. The program
should display a series from the larger
member of the progression to the smaller.

n=6, q=7, b1=3

11

Print n members of the arithmetic
progression *. The program should output a
series from the smallest member of the
progression to the larger.

n=8, d=8, а1=10

12

Calculate the sum of n terms of the
increasing geometric progression **. The
program must calculate a series from the
smallest member of the progression to the
larger.

n=5, q=6, b1=1

13

Calculate the sum of n terms of the
arithmetic progression *. The program must
calculate a series from the larger member of
the progression to the smaller.

n=12, d=3, а1=4

14

Derive n members of the increasing
geometric progression **. The program
should output a series from the smallest
member of the progression to the larger.

n=15, q=2, b1=5

144

15

Print n members of the arithmetic
progression *. The program should display a
series from the larger member of the
progression to the smaller.

n=14, d=6, а1=1

16

Calculate the sum of n terms of the
increasing geometric progression **. The
program must calculate a series from the
larger member of the progression to the
smaller.

n=12, q=3, b1=15

17

Calculate the sum of n terms of the
arithmetic progression *. The program must
calculate a series from the smallest member
of the progression to the larger.

n=16, d=2, а1=20

18

Derive n members of the increasing
geometric progression **. The program
should display a series from the larger
member of the progression to the smaller.

n=4, q=8, b1=1

19

Print n members of the arithmetic
progression *. The program should output a
series from the smallest member of the
progression to the larger.

n=11, d=5, а1=-
10

20

Calculate the sum of n terms of the
increasing geometric progression **. The
program must calculate a series from the
smallest member of the progression to the
larger.

n=7, q=4, b1=4

21

Calculate the sum of n terms of the
arithmetic progression *. The program must
calculate a series from the larger member of
the progression to the smaller.

n=17, d=5, а1=-
15

22

Derive n members of the increasing
geometric progression **. The program
should output a series from the smallest
member of the progression to the larger.

n=10, q=2, b1=1

23

Print n members of the arithmetic
progression *. The program should display a
series from the larger member of the
progression to the smaller.

n=22, d=2, а1=-5

24

Calculate the sum of n terms of the
increasing geometric progression **. The
program must calculate a series from the
larger member of the progression to the
smaller.

n=7, q=7, b1=7

145

25

Calculate the sum of n terms of the
arithmetic progression *. The program must
calculate a series from the smallest member
of the progression to the larger.

n=10, d=8, а1=0

* – arithmetic progression: dnaan n)1(,1 1 .

** – geometric progression:
1

1
 n

n qbb , (,0,01 qb).

4. Make a report on the research.

6.12. List of соntrol questions on the task № 6

1. Name the types of repetitions that are implemented in the Prologue.
2. Define the term "recursive procedure".
3. Name the main advantages and disadvantages of recursion.
4. Where are the values of variables stored in recursion?
5. What is the difference between tail recursion and normal recursion?
6. Can I change the value of a variable in VisualProlog?

6.13. Task № 7. Lists and recursion

Lists

Processing lists, ie objects that contain any number of elements, is a
powerful tool of Prolog. This lab explains what lists are and how to declare
them, and provides examples of how you can use list processing in tasks. Two
well-known predicates of the Prologue are defined – member and append
(association) when considering procedural and recursive aspects of list
processing. Also, the standard predicate Visual Prolog – findall is defined,
which allows you to find and collect all solutions for one purpose. At the end of
the laboratory work, compiled lists are considered, ie lists that contain
combinations of elements of different types, and examples of grammatical
analysis of lists.

In the Prologue, a list is an object that contains a finite number of other
objects. Lists can be compared to arrays in other languages, but unlike arrays,
lists do not need to be declared in advance. Of course, there are other ways to
combine several objects into one. If the number of objects is known in advance,
it is possible to make them arguments of one composite data structure. If the
number of objects is not defined, you can use a recursive composite data

146

structure, such as a tree. But working with lists is usually easier because Visual
Prolog provides a clearer entry for them.

The list containing the numbers 1, 2 and 3 is written as follows: [1, 2,3]
Each component of the list is called an element. To format a data structure

of the list type, you need to separate the elements of the list with commas and
mark them in square brackets.

Examples: [dog, cat, canary]
[“Valerie ann”, “Jennifer caitlin”, “benjamin thomas”]

Announcement of lists

To declare a domain for the list of integers, you must use a domain
declaration, such as:

domains
integerlist = integer *

The symbol "*" means "list of something", so integer * means "List of
Integers". It should be noted that the word "list" has no special meaning in
Visual Prolog. The Zanzibar list can be called with the same success. The
notation * (not the name) tells the compiler that this is a list.

List items can be any, including other lists. However, all its elements must
belong to one domain. The domain declaration for the elements should look like
this:

domains

elementlist = elements*
elements = ...

In this case, the elements have a single type (for example: integer, real or

symbol) or are a set of different elements, denoted by different functors. You
cannot mix standard types in a list in Visual Prolog. For example, the following
declaration incorrectly identifies a list of elements that are integers and real
numbers or identifiers:

elementlist = elements*
elements = integer; real; symbol /* Wrong */

Щоб оголосити список, складений з цілих, дійсних і ідентифікаторів,
треба визначити один тип, який включає всі три типи з функторами, які
покажуть, до якого типу належить той або інший елемент. Наприклад:

elementlist = elements*

147

elements = i(integer); r(real); s(symbol) % функтори тут i, r та
s

Heads and tails

The list is a recursive composite object. It consists of two parts - the head,
which is the first element, and the tail, which is a list that includes all subsequent
elements. The tail of the list is always the list, the head of the list is always the
element.

Example:
the head of the list [a, b, c] is a;
the tail of the list [a, b, c] is [b, c].
If the list is one-item, then:
the head of the list [c] is c;
the tail of the list [c] is [].
If you select the first item in the list enough times, you will definitely

come to an empty list []. An empty list cannot be divided into head and tail.
Conceptually, this means that the list has the structure of a tree, like other
composite objects.

The structure of the tree [a, b, c, d] is shown in Fig. 6.43.

Fig. 6.43. Tree structure [a, b, c, d]

A one-element list, such as [a], is not the same as the element it contains,
because [a] is actually a complex data structure, as shown in Fig. 6.44.

Fig. 6.44. Compound data structure

Working with lists

148

The Prologue has a way of clearly separating the head from the tail.

Instead of separating the elements with commas, this can be done with a vertical
line "|".

Example:

[a, b, c] is equivalent to [a | [b, c]] and, continuing the process,
[a | [b, c]] is equivalent to [a | [b | [c]]], which is equivalent to [a | [b | [c |
[]]]].

You can use both types of delimiters in the same list, provided that the

vertical bar is the last delimiter. If desired, you can rewrite [a, b, c, d] as [a, b |
[c, d]]. Table 6.7 shows other examples.

Table 6.7. Heads and tails of lists

List Head Tail

[“a“,“b“,“c“] “a“ [“b“,“c“]
[“a“] “a“ [] % empty list

[] Not defined Not defined
[[1, 2, 3], [2, 3, 4], [

]]
[1, 2, 3] [[2, 3, 4], []]

Table 6.8 shows some examples of assignments in lists.

Table 6.8. Assignment in lists

List 1 List 2 Assigning variables

[X, Y, Z]
[Albert, eat ice cream] Х = Albert, Y = , eat, Z = ice

cream
[7] [X | Y] Х = 7, Y = []

[1, 2, 3, 4] [X, Y | Z] X = 1, Y = 2, Z = [3, 4]
[1, 2] [3 | X] fail %

Using lists

The list is a recursive composite data structure, so you need algorithms to
process it. The main way to process a list is to view and process each of its
elements until the end is reached. An algorithm of this type usually requires two
sentences. The first says what to do with a regular list (a list that can be divided
into head and tail), the second – what to do with an empty list.

Print lists

If you want to print list items, do so as shown in Example 6.15.

149

Example 6.15.

domains
 list = integer* % or any other type

predicates
 write_a_list(list)

clauses
 write_a_list([]). % if the list is empty - do nothing
 write_a_list([H|T]):- assign Н – head, Т-хвіст, tail,
then...
 write(H), nl,
 write_a_list(T).

goal
 write_a_list([1, 2, 3]).

The following are two target statements write_a_list, described in plain

language: Printing an empty list means doing nothing. Otherwise, to print a list
means to print its head (which is a single element), then print its tail (list). At
first glance, the target statement is as follows:

write_a_list ([1, 2, 3]).

It satisfies the second sentence at H = 1 and T = [2, 3]. The computer will print 1
and call recursively write_a_list:

write_a_list ([2, 3]). % це write_a_list (Т)

This recursive challenge satisfies the second sentence. This time H = 2 and T =
[3], so that the computer prints 2 and again recursively calls write_a_iist with
the target statement

write_a_list ([3]).

List [3] has only one element, it has a head 3 and a tail []. This means that the
target statement again fits the second sentence with H = 3 and T = []. The
program prints 3 and makes a recursive call:

write_a_list ([]).

Now it is clear that the first sentence is suitable for this target statement.
The second sentence is not appropriate because [] cannot be divided into head
and tail. Thus, if there were no first sentence, the target statement would be

150

unfeasible. But the first sentence is appropriate, and the target statement is
executed without further action.

Counting list items

Consider how you can determine the number of items in a list. What is the
length of the list? Here is a simple logical definition:

Length [] - 0.
The length of any other list is 1 plus the length of its tail.
To apply this in the Prologue requires two sentences (example 6.16).

Example 6.16.

domains
 list = integer* % or any other type

predicates
 length_of(list,integer)

clauses
length_of([], 0).
length_of([_|T],L):-

 length_of(T,TailLength),
 L = TailLength + 1.

Let's look at the second sentence first. Indeed, [_ | T] can be compared

with any non-empty list, with the assignment of "T" tail list. The value of the
head is not important, the main thing is that it is, and the computer can count it
as one element.

Thus, the target statement length_of ([1, 2, 3], L). fits the second sentence
at T = [2, 3]. The next step will be to calculate the length "T". When this is done
(no matter how), TailLength will have a value of 2, and the computer will add 1
to it, and then assign an "L" to 3.

So how does a computer perform an intermediate step? This is the step in
which the length [2, 3] is determined when executing the target statement
length_of ([2, 3], TailLength). In other words, length_of calls itself recursively.
This target statement fits the second sentence with the assignment:

- [3] from the target statement is assigned "T" in the sentence;
- TailLength from the target statement is assigned an "L" in the sentence.
Recall that TailLength in the target statement does not match TailLength

in the sentence, because each recursive call in the rule has its own set of
variables. Therefore, the objective statement is to find the length [3], ie 1, and
then add 1 to the length [2, 3], ie up to 2, etc.

Thus, length_of calls itself recursively to get the length of the list [3]. Tail
[3] - [], so that "T" will be assigned [], and the target statement will be to find
the length [] and, adding 1 to it, get the length [3].

151

This time everything is simple. The target statement length_of ([],
TailLength) satisfies the first sentence, which will assign 0 to the variable
TailLength. Visual Prolog will add 1 to it and get the length [3], then return to
the calling sentence. It in turn will add 1 again, will get length [2, 3] and will
return to the sentence causing it. This initial sentence will again add 1 and get
the length [1, 2, 3].

The following is an illustration of all the challenges:

length_of ([1,2,3], L1).
length_of ([2, 3], L2).
length_of ([3], L3).
length_of ([], 0).
L3 = 0 +1 = 1.
L2 = L3 +1 = 2.
L1 = L2 +1 = 3.

Exercise 6.1.

1. Write a predicate called sum_of, which works the same as length_of,
except that it works with a list of numbers and summarizes them. For example,
the target statement:

sum_of ([1,2,3,4], S).

must assign an "S" value of 10.
2. What will happen if you try to fulfill the following target statement:

sum_of (List, 10).

This targeted statement requires: "Make me a list to which you need to
add 10". Can this be done in Visual Prolog? If not, why not? (Hint: You can't
perform arithmetic operations on unrelated variables in Visual Prolog).

Tail recursion

length_of is not and cannot be tail recursion, because a recursive call is
not the last step in its sentence. The problem with using length_of is that you
can't calculate the length of the list until the tail length is calculated. But there is
a workaround. To determine the length of the list, you need to use a predicate
with three arguments:

- the first is the list itself, which the computer reduces with each call until
the list is emptied in the same way as before;

- second – free parameter that will save the intermediate result (length);
- third – the counter, which starts from zero and increases by 1 for each

call.

152

When the list becomes empty, the counter is unified with a free result.
Consider an example (example 6.17).

Example 6.17.

domains
 list = integer* % or any other type

predicates
 length_of (list, integer, integer)

clauses
 length_of ([], Result, Result).

length_of ([_ | T], Result, Counter):-
 NewCounter = Counter + 1,
 length_of (T, Result, NewCounter).

goal
 length_of ([1,7,3,2,5,1], L, 0), % start with the counter

= 0
 write ("L =", L), nl.

This version of the predicate length_of is more complex and less logical

than the previous one. It is shown only to show that tail recursive algorithms can
be found for target statements that may require a different type of recursion.

Exercise 6.2.

1. Try both length_of versions for very large lists (such as 200 or 500
items). What will happen? How do the two versions of the long lists relate to
speed?

2. Rewrite sum_of like the new version of length_of.

Sometimes you need to turn one list into another. This is done with the list

element by element, replacing each element with the calculated values. The
program in example 6.18 will add 1 to each element of the numerical list.

Example 6.18.

domains
list = integer*

predicates
add1(list,list)

clauses
add1([], []). % boundary condition
add1([Head|Tail],[Head1|Tail1]):- % separate the

head of list
Head1= Head+1, % add 1 to 1 item

153

add1(Tail,Tail1). % call an item from the rest of the
list

Translating this into natural language, we get: to add 1 to all elements of

an empty list, you need to create another empty list. To add 1 to all elements of
any non-empty list, add 1 to the head and make the resulting element the head of
the resulting list, then add 1 to each element of the tail of the list and make it the
tail of the result.

Enter the program and run the Test Goal with the target statement add1
([1,2,3,4], NewList). Test Goal will show the result:

NewList = [2, 3, 4, 5]
1 Solution

The add1 predicate performs the following operations:
1. Divides the list into Head and Tail.
2. Adds 1 to Head and assigns the result to Head1.
3. Recursively adds 1 to all Tail elements, assigns the result Tail1.
4. Combines Head1 and Tail1 and assigns the result to a new list.
This procedure is not a tail recursion, because a recursive call is not the

last step. But what's important - Visual Prolog does it wrong, in it add1 is a tail
recursion, because the steps are actually as follows:

1. Link the head and tail of the original list with Head and Tail.
2. Associate the head and tail of the result with Head1 and Tail1 (Head1

and Tail1 have not yet been determined).
3. Add 1 to Head and assign the result to Head1.
4. Recursively add 1 to all Tail elements, assigning the result Tail1.
When all is done, Head1 and Tail1 are already the head and tail of the

result, and there is no separate operation to combine them. Thus, a recursive call
is the last step.

Of course, it is not always necessary to replace every element. The
following is example 6.19, in which the program views a list of numbers and
makes a copy of it, discarding negative numbers.

Example 6.19.

domains
 list = integer*

predicates
 discard_negatives (list, list)

clauses
 discard_negatives ([], []).
 discard_negatives ([H | T], ProcessedTail):-
 H <0,

154

 !,
 discard_negatives (T, ProcessedTail).
 discard_negatives ([H | T], [H | ProcessedTail]):-
 discard_negatives (T, ProcessedTail).

For example, the target statement discard_negatives ([2, -45, 3, 468], X)

will get X = [2, 3, 468].
Next is a predicate that copies list items, causing each item to appear

twice:
doubletalk ([], []).
doubletalk ([H | T], [H, H | DoubledTail]):-
doubletalk (T, DoubledTail).

Belonging to the list

Suppose there is a list of names John, Leonard, Eric and Frank, and you
need to use Visual Prolog to check if the specified name is in this list. In other
words, you need to find out the relationship (affiliation) between two arguments
– the name and the list of names. This is expressed by the following predicate:

member (name, namelist). % «name» belongs to «namelist»

In example 6.20, the first sentence checks the head of the list. If the head

of the list matches the name you are looking for, you can conclude that Name
belongs to the list. Since the tail of the list is not of interest, it is denoted by an
anonymous variable. According to the first sentence, the target statement is
member (john, [john, leonard, eric, frank]). will be performed.

Example 6.20

domains
 namelist = name*
 name = symbol

predicates
 member (name, namelist)

clauses
 member (Name, [Name | _]).
 member (Name, [_ | Tail]):-
 member (Name, Tail).

If the head of the list does not match Name, you need to check if Name

can be found in the tail of the list. In plain language: Name belongs to the list if
Name is the first item in the list, or Name belongs to the list if Name belongs to
the tail.

155

The second member sentence, which expresses the relationship of
affiliation, in Visual Prolog looks like this:

member (Name, [_ | Tail]):-

member (Name, Tail).

Exercise 6.3.
1. For example 4.6, try the following goal statement using Test Goal:

member (susan, [ian, susan, john]).

2. Add statements to the domain and predicate sections so that you can

use member to determine whether a number belongs to a numeric list. Try a few
targeted statements, including the following:

member (X, [1,2, 3, 4]).

to test your new program.

3. Does the order of writing two sentences matter for the member

predicate? Check how the program behaves if you swap two sentences. Will
there be a difference in fulfilling the following target statement for both cases?

member (X, [1,2,3,4,5])

Merge lists

As the member predicate given in Example 4.6, it works in two ways.
Consider his sentence again:

member (Name, [Name | _]).

member (Name, [_ | Tail]):-
member (Name, Tail).

These sentences can be viewed from two different points of view:
declarative and procedural.

- from the declarative point of view, the sentences state the following:
Name belongs to the list if the chapter coincides with Name; if not, Name
belongs to the list, if it belongs to its tail;

- from a procedural point of view, these two sentences can be interpreted
as follows: to find an element of the list, you need to find its head; otherwise
you need to find the element in the tail.

These two points of view are correlated with the target statements:

156

member (2, [1,2,3,4]).

member (X, [1,2,3,4]).

As a result, the first target statement "asks" Visual Prolog to find out
whether the statement is true, the second – to find all members of the list
[1,2,3,4]. The predicate member is the same in both cases, but its behavior can
be viewed from different points of view.

Recursion from a procedural point of view

The peculiarity of the Prologue is that often when you specify a sentence
for a predicate from one point of view, they will be performed from another. To
see this duality, create a predicate in the following example (example 4.7) to
join one list to another. Define the predicate append with three arguments:

append (List1, List2, List3)

It combines List1 and List2 and creates List3. Once again we will use
recursion (this time from the procedural point of view). If List1 is empty, List2
will be the result of merging List1 and List2. On the Prologue it will look like
this:

append ([], List2, List2).

If List1 is not empty, you can combine List1 and List2 to form List3,
making List1 head List3 head. (In the following statement, the variable H is
used as the head for List1 and for List3.) The tail of List3 is L3, it consists of
combining the remainder of List1 (ie L1) and the entire List2. That is:

append ([H | L1], List2, [H | L3]): -
append (L1, List2, L3).

The append predicate is executed as follows: until List1 is empty, the
recursive sentence passes one element to List3. When List1 becomes empty, the
first sentence unifies List2 with the resulting List3.

Exercise 6.4.
The Append predicate is defined in example 6.21. Download the program

from example 6.21.

Example 6.21.

domains
integerlist = integer*

157

predicates
append(integerlist,integerlist,integerlist)

clauses
append([],List,List).
append([H|L1],List2,[H|L3]):-

append(L1,List2,L3).

Run the following target statement:
append([1,2,3],[5,6],L)

And then try this:
append ([1,2], [3], L), append (L, L, LL).

Number of options for using predicates

Considering append from a declarative point of view, you have identified
the relationship between the three lists. However, this relationship will be
maintained even if List1 and List3 are known and List2 is not. It is also true if
only List3 is known. For example, to determine which of the two lists can be
combined to obtain a known list, you need to make a target statement of the
following type:

append (L1, L2, [1,2,4]).

Visual Prolog will find the following solutions for this target statement:

L1 = [], L2 = [1, 2, 4]
L1 = [1], L2 = [2, 4]
L1 = [1, 2], L2 = [4]
L1 = [1, 2, 4], L2 = []
4 Solutions

You can also use append to determine which list can be attached to [3, 4]

to get a list [1, 2, 3, 4]. Run the following target statement:

append (L1, [3,4], [1,2,3,4]).

Visual Prolog will find a solution:

L1 = [1, 2].

The append predicate defined the relationship between the input set and

the output set so that the relationship can be applied in both directions.

158

The state of the arguments when the predicate is called is called the
parameter stream. An argument that is assigned or assigned at the time of the
call is called an input argument and is denoted by the letter "i"; and a free
argument is the original argument, denoted by the letter "o".

The append predicate has the ability to work with different parameter
streams, depending on what output you give it. However, not all predicates can
be called with different parameter streams. If the sentence of the Prologue can
be used with different streams of parameters, it is called a reversible sentence
(Russian: "reversible sentence"). When writing your own sentences in Visual
Prolog, keep in mind that reversible sentences have added benefits, and creating
them adds "power" to predicates.

Find all solutions to the goal at once

The advantage of recursion is that, unlike a return search, it transmits
information (through parameters) from one recursive call to the next. Therefore,
a recursive procedure may store memory for intermediate results or counters as
it is executed.

But there is one thing that a return search can do and recursion can't. This
is the search for all alternative solutions in the target statement. It may turn out
that all solutions are needed for the target statement, and they are needed all at
once, as part of a single complex composite data structure. The built-in predicate
findall uses target statements as one of its arguments and gathers all solutions
for that target statement into a single list. The predicate findall has three
arguments:

VarName (variable name) – determines the parameter to be compiled in
the list;

myPredicate – determines the predicate from which to collect values;
ListParam – must specify the type to which the ListParam values belong.

Example 6.22 shows a program that uses findall to print the arithmetic mean of a
group of people.

Example 6.22.

domains
 name, address = string
 age = integer
 list = age*

predicates
 person (name, address, age)
 sumlist (list, age, integer)

clauses
 sumlist ([], 0,0).
 sumlist ([H | T], Sum, N):-
 sumlist (T, S1, N1),

159

 Sum = H + S1,
 N = 1 + N1.
 person ("Sherlock Holmes", "22B Baker Street", 42).
 person ("Pete Spiers","Apt. 22, 21st Street", 36).
 person ("Mary Darrow", "Suite 2, Omega Home", 51).

goal
 findall (Age, person (_, _, Age), L),
 sumlist (L, Sum, N),
 Ave = Sum / N,
 write ("Average =", Ave), nl.

The findall sentence in this program creates a list of L, which contains all

the parameters that indicate the age derived from the predicate person. If you
want to compile a list of all people who are 42 years old, you should fulfill the
following sub-target statement:

findall (Who, person (Who, _, 42), List)

But this sub-goal requires the program to contain domain ads for the

resulting list:

slist = string*

Compiled lists

The list of integer values can be declared simply:

integerlist = integer*

The same is true for a list of real numbers, a list of identifiers or a list of

strings. It is often important to have a combination of elements of different types
within one list:

[2,3,5.12, ["food", "goo"], "new"] % incorrect in Visual Prolog

Composite lists are lists that use more than one type of item. Special

declarations are required to work with lists that contain different types of items,
because Visual Prolog requires that all items in the list belong to the same type.
To create a list that could store different types of elements, you need to use
functors in the Prologue, because a domain can contain more than one data type
as arguments for functors.

An example of a domain ad for a list, which may contain characters,
goals, strings, or lists, is as follows:

160

domains % functors l, i, c and s
Hist = l(list); i(integer); c(char); s(string)
list = llist*

List
[2,9, ["food", "goo"], "new"] % incorrect in Visual Prolog

should be presented in Visual Prolog as:

[i(2), i(9), l([s ("food"), s("goo")]), s("new")] % correct

The following is an example (Example 6.23) that shows the merging of lists and
the use of domain declarations in the typical case of lists.

Example 6.9.

domains
 llist = l(list); i(integer); c(char); s(string)
 list = llist*

predicates
 append (list, list, list)

clauses
 append ([], L, L).
 append ([X | L1], L2, [X | L3]):-
 append (L1, L2, L3).

goal
 append ([s (likes), l([s (bill), s (mary)])],[s (bill), s (sue)],

Ans),
 write ("First list:", Ans, "\ n \ n"),
 append ([l([s ("This"), s ("is"), s ("a"), s ("list")]), s (bee)], [c

('c')], Ans2),
 write ("Second list:", Ans2, '\n', '\n').

Task

1. Run the programs shown in the examples (example 6.16 - example
6.23) in Visual Prolog 5.2.

2. Perform the tasks formulated in the exercises (exercise 6.1 - exercise
6.4) in Visual Prolog 5.2.

3. According to the variant of the task (tables 6.9 - 6.10), write three
programs in the Prologue language. The option number is determined by the
serial number of the student in the teacher's journal.

Table 6.9. Task options

Task number Task number 1 Task number 2 Task number 3

161

1 1 7 17
2 2 8 18
3 3 9 19
4 4 10 20
5 5 11 21
6 1 12 22
7 2 13 17
8 3 14 18
9 4 15 19

10 5 16 20
11 1 8 21
12 2 9 22
13 3 10 17
14 4 11 18
15 5 12 19
16 1 13 20
17 2 14 21
18 3 15 22
19 4 16 17
20 5 7 18
21 1 9 22
22 2 10 21
23 3 11 17
24 4 12 20
25 5 13 17

Table 6.10. Task

Task number Task

1 Display the entire list
2 Calculate the length of the list of integers
3 Calculate the length of the list of real numbers
4 Calculate the sum of the elements of the list of integers
5 Calculate the sum of the elements of the list of integers
6 Add the number x to each list item (list length n)

7
Display all elements of the list that satisfy the condition: x>
0

8
Display all elements of the list that satisfy the condition: x
< 0

9 Display all items in the list that satisfy х>=0

10
Print all elements of the list that satisfy the condition: x <=
0

162

11 Print all elements of the list that satisfy the condition: x ≠ 0
12 Duplicate all list items that satisfy the condition: x> 0

13
Duplicate all elements of the list that satisfy the condition:
x <0

14 Duplicate all list items that satisfy the condition: x> = 0
15 Duplicate all list items that satisfy the condition: x <= 0

16
Duplicate all elements of the list that satisfy the condition:
x ≠ 0

17
Check the presence of a given item in the numerical list
and, if found, determine its position in the list

18
Check the presence of a given item in the string list and, if
found, determine its position in the list

19
Calculate the arithmetic mean of the elements of the list of
real numbers

20
Calculate the arithmetic mean of the elements of the list of
integers

21 Find the maximum item in the list
22 Find the minimum list item

6.14. List of соntrol questions on the task № 7

1. Define the concept of a list.
2. What are the components of the list?
3. How is the structure of the data type list?
4. What symbol indicates that a list has been created?
5. What parts does the list consist of?
6. What is the way in Visual Prolog to separate the head from the tail?
7. Why is the length of any list?
8. What is the state of the arguments when calling a predicate?
9. Define the terms "input" and "output argument".
10. Which sentence is called reversible?
11. What can a return search do in contrast to recursion, and what built-in

predicate is used to solve this problem?
12. Define the concept of "compiled list".
13. What are folded functors for?

6.15. Task № 8. Internal database of facts

Visual Prolog internal facts base This lab will look at how to declare
internal fact databases and how you can change the content of your internal facts
database. The internal fact database consists of facts that can be added and
removed from the program on Visual Prolog during its execution. It is possible
to declare predicates that describe the internal database in the facts section of the

163

program and apply these predicates in the same way as the predicates described
in the predicates section.

In order to add new facts to the database, Visual Prolog uses the predicts
assert, asserta, assertz, and the predicates retract and retractall are used to delete
existing facts. You can change the contents of a fact database by first deleting a
fact and then inserting a new version of that fact (or a completely different fact).
The predicates consult / 1 and consult / 2 read the facts from the file and add
them to the internal database, and save / 1 and save / 2 store the contents of the
internal database of facts in the file.

Visual Prolog interprets database facts in the same way as regular
predicates. The facts of the predicates of the internal database of facts are stored
in a table that can be easily modified, while the usual predicates, to achieve
maximum speed, are compiled into binary code.

Announcement of the internal database of facts

The keyword facts (synonymous with the obsolete word database)
determines the beginning of the declaration of the facts section. The facts
section consists of a sequence of predicate declarations that describe the
corresponding internal facts base. During execution, you can use the asserta and
assertz predicates to add facts (but not rules) to the fact base. Or, by calling the
standard consult predicate, you can get the facts from a file on disk. An example
of using the facts section is given below (example 6.24):

Example 6.24.
domains

 name, address = string
 age = integer
 gender = male; female

facts
 person (name, address, age, gender)

predicates
 male (name, address, age)
 female (name, address, age)
 child (name, age, gender)

clauses
 male (Name, Address, Age):-
 person (Name, Address, Age, male).

In this example, you can use the predicate person in the same way as other

predicates (male, female, child). The only difference is that it is possible to add
and remove facts for the person predicate while the program is running.

The following two restrictions on predicates announced in the facts
section should be noted:

164

- it is allowed to add to the database only facts, but not rules;
- database facts cannot contain free variables.
Multiple fact sections are allowed, but you must explicitly specify the

name of each fact section.

facts - mydatabase
myFirstRelation (integer)
mySecondRelation (real, string)
myThirdRelation (string)

/ * еtc .* /

The facts section description named mydatabase creates a fact database

named mydatabase. If you do not name the internal fact database, it is given the
default name dbasedom by default. The program can also contain local
anonymous fact sections only if it consists of a single module that is not
declared as part of the project. The Visual Development Environment (VDE)
compiles the program file as a single module only when using the Test Goal
utility. Otherwise, the anonymous section of facts must be declared global. To
do this, put the keyword global in front of the keyword facts.

The names of the predicates of the fact database must be unique in the
module (source file), the same predicate names cannot be used in two different
sections of facts. Similarly, you cannot use the same predicate names in the facts
and predicates sections. However, the names of the predicates defined in the
local facts sections are local to the module where they are declared and do not
conflict with the local names of the predicates or facts declared in other
modules.

Use of internal fact bases

Because Visual Prolog presents a relational database as a collection of
facts, you can use it as a powerful query language for internal fact databases.
The Visual Prolog unification algorithm automatically selects facts with the
correct values for known arguments and assigns values to unknown arguments
until its return search algorithm returns all the solutions for a given query.

Access to the internal evidence base

Predicates belonging to the internal database of facts are available in the
same way as other predicates. The only visible difference is that the
announcements of such predicates are located in the facts section instead of the
predicates section.

Example 6.25.

domains
 name = string

165

 sex = char
facts

 person (name, sex)
clauses

 person ("Helen", 'F').
 person ("Maggie", 'F').
 person ("Suzanne", 'F').
 person ("Per", 'M').

In Example 6.25, you can call person with the name person ('F') to find all

women, or person ('Maggie', 'F') to verify that a woman named "Maggie" exists
in your database. By their nature, predicates in the facts section are always
indeterminate. Since facts can be added at any time during program execution,
the compiler should always keep in mind that there is a possibility to find
alternative solutions during the return search. If there is a predicate in the facts
section for which there will never be more than one fact, you can declare it by
writing the determ keyword before declaring the fact predicate (or the single
keyword if the predicate must always have one and only one fact):

facts

determ daylight_saving (integer)

Note that when you try to add a new fact to a deterministic fact base

predicate that already has a fact, Visual Prolog will give an error.

Update the internal facts base

Facts for fact base predicates can be determined at compile time in the
clauses section, as shown in Example 5.2. During execution, facts can be added
and removed using the predicates described below. It should be noted that the
facts identified at compile time in the clauses section can also be deleted, they
are no different from the facts added at runtime.

Standard Visual Prolog predicates for working with facts: assert, asserta,
assertz, retract, retractall, consult and save – can have one or two arguments.
The optional second argument is the name of the internal evidence base. The
notation "/ 1" and "/ 2" after each predicate name indicates the required number
of arguments for this version of the predicate. Comments (such as "/ * (i) * /"
and "/ * (o, i) * /") show the stream (s) of parameters for this predicate.

Entering facts during the program

At runtime, facts can be added to the internal fact database using
predicates: assert, asserta and assertz, or by downloading facts from a file using
consult. There are three predicates for adding one fact at runtime:

166

asserta (<the fact>) % (i)
asserta (<the fact>, facts_sectionName) % (i, i)
assertz (<the fact>) % (i)
assertz (<the fact>, facts_sectionName) % (i, i)
assert (<the fact>) % (i)
assert (<the fact>, facts_sectionName) % (i, i)

The asserta predicate inserts a new fact into the fact database before the
available facts for that predicate, and the assertz inserts the facts after the
available facts for that predicate. Using the assert predicate gives a result similar
to using assertz.

Because fact base predicate names are unique within the program (for
global fact sections) or module (for local fact sections), asserta and assertz
predicates always know which fact database to add the fact to. However, an
optional second argument can be used to ensure that the required fact database is
used to verify the type.

The first predicate of example 6.26 will insert the fact about "Suzanne",
described by the predicate person, after all the facts of person, currently stored
in memory. The second is the fact of "Michael" before all the available facts of
the predicate person. The third is the fact of "John" after all the other likes in the
likesDatabase, and the fourth is to insert the fact of "Shannon" in the same facts
before all the other likes.

Example 6.26.

assertz (person ("Suzanne", "New Haven", 35)).
asserta (person ("Michael", "New York", 26)).
assertz (likes ("John", "money"), likesDatabase).
asserta (likes ("Shannon", "hard work"), likesDatabase).

After calling these predicates, the fact base will look as if you have started

working with the following facts:

% Internal database of facts – dbasedom
person ("Michael", "New York", 26).

% ... Other facts person ...
person ("Suzanne", "New Haven", 35).

% Internal database of facts – likesDatabase
likes ("Shannon", "hard work").

% ... Other facts likes ...
likes ("John", "money").

167

Beware of accidentally written code that states the same fact twice.

Internal fact databases do not provide for any uniqueness, so the same fact can
appear in the internal fact database many times. However, it is very easy to write
the assert version with uniqueness check:

facts - people

person (string, string)
predicates

uassert (people)
clauses

uassert (person (Name, Address)):-
person (Name, Address),
!,
% OR
assert (person (Name, Address)).

Read facts from a file

The consult predicate reads the facts described in the facts section from
the fileName file and inserts them into the program at the end of the
corresponding fact database. The consult predicate has one or two arguments:

consult (fileName) % (i)
consult (fileName, databaseName) % (i, i)

However, unlike assertz, if you call consult with only one argument

(without the fact base name), only the facts described in the untitled section (by
default dbasedom) will be read. If you call consult with two arguments (file
name and fact base name), only the facts from the specified fact base will be
checked. If the file contains anything other than the facts of the specified
database, the consult predicate will return an error when it reaches this line.

It should be noted that the consult predicate reads one fact at a time. If the
file contains ten facts and there is a syntax error in the seventh fact, the consult
will enter the first six facts in the fact database and then issue an error message.

It should be noted that the consult predicate can only read files in the
format created by save. Files must not contain:

- uppercase characters, except those contained inside double-quoted lines;
- gaps, except those contained inside double-quoted rows;
- comments;
- blank lines;
Symbol identifiers (symbol) without double quotes.

Delete facts during program execution

168

The retract predicate unifies the facts and removes them from the internal
facts base. It has the following format:

retract (<the fact>) % (i)
retract (<the fact>, databaseName) % (i, i)

The retract predicate removes the first fact from your database, which

coincides with <the fact>, by associating free <the fact> variables during
program execution. Deleting facts from the internal facts base is equivalent to
the process of accessing them with the side effect of deleting unified facts.
retract is indeterminate if the predicate predicate to be removed by retract has
not been declared deterministic. When searching with a return, the retract
predicate deletes all unified facts as long as they exist, after which it no longer
finds the required facts and fails.

Example 6.27.

Assume that the program has the following sections facts.
facts

 person (string, string, integer)
facts - likesDatabase

 likes (string, string)
 dislikes (string, string)

clauses
 person ("Fred", "Capitola", 35).
 person ("Fred", "Omaha", 37).
 person ("Michael", "Brooklyn", 26).
 likes ("John", "money").
 likes ("Jane", "money").
 likes ("Chris", "chocolate").
 likes ("John", "broccoli").
 dislikes ("Fred", "broccoli").
 dislikes ("Michael", "beer").

With the following facts, Visual Prolog sections, you can set the following
goals:

retract (person ("Fred ",_,_)), % 1
retract (likes (_, "broccoli")), % 2
retract (likes (_, "money"), likesDatabase), % 3
retract (person ("Fred ",_,_), likesDatabase). % 4

The first goal is to remove the first person is Fred fact from the dbasedom

fact database. The second target will remove the first fact that matches likes (X,

169

"broccoli") from the likesDatabase. For both purposes, Visual Prolog knows
from which database to delete, because the names of the predicates of the fact
database are unique: the predicate person is only in the unnamed database of
facts, a likes – only in the database likesDatabase. The third and fourth goals
show how the second argument can be used for type checking. The third goal is
successfully implemented by removing the first fact that matches likes (_,
"money") from likesDatabase, and the fourth goal will give an error because
there is no (and cannot be) fact person in the likesDatabase fact database. The
following goal illustrates how you can get values from a retract predicate:

retract (person (Name,Home, Age)),

 write (Name, ",", Age), nl,
 fail.

When a fact base name is specified as the second retract argument, you

may not specify the name of the fact base predicate from which the facts are
removed. In this case, retract will search for and delete all facts in the specified
database. Example:

goal

retract (X, mydatabase),
write (X),
fail.

Delete multiple facts at once

The retractall predicate removes from the fact base all facts that match the
<the fact> pattern. The predicate retractall has the following format:

retractall (<the fact>)
retractall (<the fact>, databaseName)

The retractall acts similarly to the action given as follows

retractall (X):- retract (X), fail.
retractall (_).

but much faster.

Obviously, the retractall predicate always completes successfully.
From retractall initial values cannot be received. This means that, as with
not, you need to use an underscore for free variables. As with the assert
and retract predicates, you can use a second argument to check the type.

170

And, as in the case of the retract predicate, if the retractall call uses an
underscore, you can delete all the facts from the specified facts section.

The following goal removes all facts about men from the person
facts database: retractall (person (_,_,_, male)).

The following goal removes all facts from mydatabase:

retractall (_, mydatabase).

Preservation of the database of facts during the program
The save predicate stores facts from the specified facts database in the

file. This predicate has one or two arguments:

save (fileName)% (i)
save (fileName, databaseName)% (i, i)

If you call the save predicate with only one argument (without the fact

base name), the file from the fileName will save the facts from the dbasedom
fact database, which is used by default. When you call the save predicate with
two arguments (file name and fact base name), the specified file will store the
facts from the facts section of the fact database named databaseName..

Keywords that determine the properties of facts

You can use the following optional keywords in the facts section ad:

facts [- <databasename>]
[nocopy] [{nondeterm | determ | single}]
dbPredicate ['('[Domain [ArgumentName]]*')']

Optional keywords nondeterm, determ and single declare the determinism

mode of the declared dbPredicate fact base predicate. Only one of them can be
used. If the determinism mode of the predicate of the fact base is not explicitly
specified, then the default value is nondeterm. Note that the nondeterm mode for
fact base predicates is always set by default, regardless of the Default Predicate
Mode check box in the Compiler Options VDE dialog box.

- nondeterm – specifies that the fact base can contain any number of facts
for the dbPredicate fact base predicate. This is the default mode.

- determ – specifies that the fact database can contain no more than one
fact for the dbPredicate fact database predicate.

- single – specifies that the fact database always contains one and only one
fact for the dbPredicate fact database predicate.

- nocopy – usually when the fact base predicate is called to associate a
variable with a string or compound object, the called data is copied from the

171

heap to the global Visual Prolog stack (GStack). nosoru declares that the data
will not be copied, and the variables will refer directly to the fact data stored in
the "heap". This can greatly increase efficiency, but if a copy has not been made,
after deleting the fact, the variable will indicate some "garbage". Therefore, this
approach should be used with caution.

- global – determines that the fact base is global. It should be noted that
reliable programming techniques require the use of global facts. Instead, you can
use global predicates that work with local facts.

Facts declared with the keyword nondeterm

The nondeterm keyword defines the default mode for facts (fact base
predicates) declared in the facts section. If none of the words determ or single
are used to declare the facts, the compiler uses nondeterm mode. Usually, by
their nature, predicates of factual bases are indeterminate. Because facts can be
added at any time during program execution, the compiler must keep in mind
that alternative solutions may be found when searching with returns.

Facts announced with the keyword determ

The determ keyword specifies that the fact base can contain no more than
one fact for the fact base predicate declared with that keyword. Therefore, if the
program tries to establish the second such fact in the fact database, Prolog will
generate an error. Therefore, the programmer should use special care with
deterministic facts.

Declaring a fact deterministic allows the compiler to generate more
efficient code, and when calling such predicates you will not be warned about a
possible non-deterministic call. This is useful for flags, counters and other
similar objects.

Particular attention should be paid to the fact that when deleting a fact that
is declared determ, the call of non-deterministic predicates retract / 1 and retract
/ 2 will be deterministic. Therefore, if it is known that at any time the fact base
contains no more than one fact counter, you can write:

facts

determ counter (integer CounterValue)
goal

...
retract (counter (CurrentCount)),

% Пролог не встановить точку відкату Count =
CurrentCount + 1,
assert (counter (Count)),

замість
facts

counter (integer CounterValue)

172

predicates
determ retract_d (dbasedom)

clauses
retract_d (X): - retract (X),!. % deterministic

predicate
goal

...
retract_d (counter (CurrentCount)),

% Пролог не встановить точку відкату Count =
CurrentCount + 1,
asserta (counter (Count)),

Facts declared with the keyword single

The single keyword specifies that the fact database always contains one
and only one fact for the fact base predicate declared with the single keyword.
Therefore, single facts must already be known when the program calls the target.
Therefore, they must be initialized in the clauses sections of the program source
code. Example:

facts - properties

single numberWindows s (integer)
clauses

numberWindows_s (0).

Single facts cannot be deleted. If you try to delete a single fact, the
compiler will generate an error. In most cases, the compiler can detect an
attempt to delete a single fact at compile time.

Since one instance of a single fact always exists, a single fact call never
fails if it is called with free arguments. For example, the following call:
numberWindows_s (Mum), never fails if Mum is a free variable. Therefore, it is
convenient to use single facts in predicates declared with the procedure
determinism type.

The predicates assert, asserta, assertz and consult, applied to the fact of
single, act similarly to the pair of predicates retract and assert. Namely, the
predicates assert (consult) change the existing instance of the fact to the
specified new one. Using the single keyword before declaring a fact allows the
compiler to make optimized code to access and modify the single fact. For
example, for assert predicates applied to a single fact, the compiler generates
code that works more efficiently than a pair of retract and assert predicates
applied to a deterministic fact (and even more so than a pair of retract and assert
predicates when used with normal (nondeterministic) fact).

Initializing single facts for some domains (for which there are no default
values) is non-trivial. The following information may be useful:

173

- binary data domains can be initialized by assigning them a specific
binary value. Example:

global domains

font = binary
facts - properties

single my_font (font)
clauses

my_font ($ [00])

- another important special case is the initialization of single facts that
contain the standard domain ref. The ref domain is a domain for reference
numbers in external Visual Prolog databases, but it is also used in many specific
domains declared in packages provided by Visual Prolog. For example, the main
domain VPI window is declared as follows:

domains

window = ref

It should be noted that to initialize the values of the domain ref, you can

use unsigned numbers with the previous tilde character "(~)". For example, you
can write:

facts

single mywin (WINDOW)
clauses

mywin (~ 0).

Examples of using the internal facts base

The following is a simple example (Example 6.28) of how to use an
internal factual database to write a classification expert system. An important
advantage of using the fact base in this example is that it is possible to add
knowledge (and delete them) during the program.

Example 6.28.

domains
thing = string
conds = cond*
cond = string

facts - knowledgeBase
is_a(thing,thing,conds)
type_of(thing,thing,conds)
false(cond)

174

predicates
run(thing)
ask(conds)
update

clauses

run(Item):-
 is_a(X,Item,List),
 ask(List),
 type_of(ANS,X,List2),
 ask(List2),
 write("The ", Item," you need is (a/an) ", Ans),nl.

run(_):-
 write("This program does not have enough "),
 write("data to draw any conclusions."),
 nl.

ask([]).
ask([H|T]):-

 not(false(H)),
 write("Does this thing help you to "),
 write(H," (enter y/n)"),
 readchar(Ans), nl, Ans='y',
 ask(T).

ask([H|_]):-
 assertz(false(H)), fail.

is_a("language","tool",["communicate"]).
is_a("hammer","tool",["build a house","fix a fender","crack a

nut"]).
is_a("sewing_machine","tool",["make clothing","repair

sails"]).
is_a("plow","tool",["prepare fields","farm"]).
type_of("english","language",["communicate with people"]).
type_of("prolog","language",["communicate with a

computer"]).
update:-

 retractall(type_of("prolog","language",
["communicate with a computer"])),

 asserta(type_of("Visual Prolog","language",
 ["communicate with a personal computer"])),
 asserta(type_of("prolog","language",
 ["communicate with a mainframe computer"])).

175

The following facts could be entered using the predicate asserta or assertz,
or read from the file using the predicate consult. However, in this example, they
are located in the clauses section.

is_a (language, tool ["communicate"]).
is_a (hammer, tool, ["build a house", "fix a fender", "crack a nut"]).
is_a (sewing_machine, tool, ["make clothing", "repair sails"]).
is_a (plow, tool, ["prepare fields", "farm"]).
type_of (english, language, ["communicate with people"]).
type_of (prolog, language, ["communicate with a computer"]).

Enter as a goal:
goal

run (tool).
Now enter the following goal:

update,
run (tool).

The update predicate is included in the source code of the program,
deletes the fact type_of (prolog, language, ["communicate with a computer"]).
from the internal knowledge base KnowBase and adds two new facts to the
program:

type_of (prolog, language, ["communicate with a mainframe

computer"])
type_of ("Visual Prolog", language, ["communicate with a personal

computer"])

By calling the save/2 predicate with the names of the text file and the fact

base as its arguments, you can save the entire knowledgeBase fact database in a
text file. For example, after calling save ("mydata.dba", knowledgeBase) the
mydata.dba file will be similar to the clauses section of a regular Visual Prolog
program, and each fact will be written on a separate line.

Using the predicate consult, you can read the facts from this file into
memory: consult ("mydata.dba", knowledgeBase). You can manipulate facts that
describe the predicates of fact bases (facts described in the facts sections) as if
they were terms. When declaring the fact base, Visual Prolog generates an
internal domain corresponding to the facts from the facts section (example 6.29).

Example 6.29.
facts - dba1 % dba1 domain for these predicates

person (name, telno)

176

city (cno, cname)

Upon receiving the following declarations, the Visual Prolog compiler will
generate the appropriate dba1 domain:

domains
dba1 = person (name, telno); city (cno, cname)

This dba1 domain can be used just like any other domain. For example,

you can use the standard readterm predicate to create a my_consuit predicate
similar to the standard consult predicate.

Task

1. Implement the programs given in the examples (examples 6.27 - 6.28)
in Visual Prolog 5.2.

2. According to the variant of the task (tables 6.11 - 6.12), using the
program given in example 6.29, write two programs in the Prologue language.
The option number is determined by the serial number of the student in the
teacher's journal.

Example 6.29.

domains
 brand = string
 model = string
 year = integer
 color = string
 owner = string

facts
 car (brand, model, year, color, owner)

clauses
 car ("Skoda", "Fabia", 2008, "Silver", "Alexander").
 car ("Skoda", "Octava", 2005, "Green", "Georgy").
 car ("Skoda", "Octava", 2010, "White", "Denis").
 car ("Skoda", "Octava", 2006, "Blue", "Ivan").
 car ("Chevrolet", "Aveo", 2008, "Brown", "Oleg").
 car ("Chevrolet", "Captiva", 2007, "Brown", "Alexander").
 car ("Chevrolet", "Lacetti", 2007, "Brown", "Gennady").
 car ("Chevrolet", "Lacetti", 2010, "Red", "Vitaly").
 car ("Hyundai", "Sonata", 2006, "Red", "Nikita").
 car ("Hyundai", "Getz", 2006, "White", "Olga").
 car ("Hyundai", "Sonata", 2011, "Red", "Pavel").
 car ("Hyundai", "Elantra", 2008, "Red", "Oksana").

177

 car ("Mazda", "323", 1994, "White", "Sergey").
 car ("Mazda", "3", 2004, "Red", "Olga").
 car ("Mazda", "6", 2011, "Red", "Pavel").
 car ("Mitsubishi", "Lancer", 2004, "Gold", "Natalia").
 car ("Mitsubishi", "Colt", 2005, "Blue", "Elena").
 car ("Mitsubishi", "Lancer X", 2011, "Silver", "Nikita").
 car ("Mitsubishi", "Lancer", 2008, "Silver", "Victor").
 car ("Opel", "Vectra", 2007, "White", "Natalia").
 car ("Opel", "Vectra", 2003, "Silver", "Elena").
 car ("Opel", "Astra", 2011, "Silver", "Olga").
 car ("Opel", "Kadet", 1991, "Red", "Gennady").
 car ("Opel", "Kadet", 1993, "Black", "Nadezda").
 car ("Opel", "Omega", 2004, "Silver", "Victor").
 car ("Peugeot", "406", 1999, "Silver", "Natalia").
 car ("Peugeot", "206", 2000, "Silver", "Elena").
 car ("Peugeot", "307", 2008, "Silver", "Olga").
 car ("Peugeot", "406", 1999, "Red", "Gennady").
 car ("Peugeot", "206", 2001, "Black", "Nadezda").
 car ("Peugeot", "605", 2001, "Silver", "Victor").

Table 6.11. Task options

№ option Task number 1 Task number 2

1 1 12
2 2 13
3 3 14
4 4 15
5 5 16
6 6 17
7 7 18
8 8 19
9 9 20

10 10 21
11 11 22
12 12 23
13 13 24
14 14 25
15 15 1

178

16 16 2
17 17 3
18 18 4
19 19 5
20 20 6
21 21 7
22 22 8
23 23 9
24 24 10
25 25 11

Table 6.12. Task

Task number Task

1

Remove from the "facts base" all cars that have the color of
the body "Red" and which are cars manufactured by
"Hyundai". After deletion, print the data from the "fact
database".

2

Delete from the "facts base" the first fact that satisfies the
conditions: the brand of the car "Opel", the year of
manufacture of the car 2007. After deletion, remove the
data from the "facts base".

3

Remove from the "fact base" all cars that have the color of
the body "Brown" and manufactured in 2007. After
deletion, print the data from the "fact database".

4

Remove the first satisfying fact from the "fact base": year
of manufacture 2007, owner's name - "Alexander". After
deletion, print the data from the "fact database".

5

Remove from the "fact base" all cars that have a body color
"Silver". After deletion, print the data from the "fact
database".

6

Remove from the "facts base" the first fact that satisfies the
conditions: the car model "Octava", body color "White".
After deletion, print the data from the "fact database".

7

Remove from the "fact base" all cars manufactured in
2004. After deletion, print the data from the "fact
database".

8

Remove from the "facts base" the first fact that satisfies the
conditions: the car brand "Peugeot", the owner of the car
"Natalia". After deletion, print the data from the "fact
database".

9 Remove from the "fact sheet" all cars manufactured by

179

Peugeot, manufactured in 2001. After deletion, print the
data from the "fact database".

10

Remove from the "facts base" the first fact that satisfies the
conditions: the car brand "Skoda", the owner of the car
"Denis". After deletion, print the data from the "fact
database".

11

Remove from the "facts base" all cars that have the color of
the body "Silver" and made in 2008. After deletion, print
the data from the "fact database".

12

Delete from the "facts database" the first fact that satisfies
the conditions: the car brand "Chevrolet", year of
manufacture 2007. After deletion, remove the data from the
"facts database".

13

Remove from the "fact base" all cars manufactured in
2008. After deletion, print the data from the "fact
database".

14

Remove from the "facts base" the first fact that satisfies the
conditions: the car brand "Opel", the car model "Kadet".
After deletion, print the data from the "fact database".

15

Remove from the "facts base" all the fact that satisfies the
conditions: the car brand "Opel", the car model "Vectra".
After deletion, print the data from the "fact database".

16

Remove from the "facts base" the first fact that satisfies the
conditions: the car brand "Peugeot", the car model "206".
After deletion, print the data from the "fact database".

17

Remove from the "facts base" all the fact that satisfies the
conditions: the car brand "Mitsubishi", body color "Silver".
After deletion, print the data from the "fact database".

18

Remove from the "facts base" the first fact that satisfies the
conditions: the brand of the car "Hyundai", the color of the
body "Red". After deletion, print the data from the "fact
database".

19

Remove from the "facts base" all the fact that satisfies the
conditions: the car brand "Chevrolet", the color of the body
"Brown". After deletion, print the data from the "fact
database".

20

Delete from the "facts base" the first fact that satisfies the
conditions: the car brand "Peugeot", year of manufacture
1999. After deletion, remove the data from the "facts base".

21

Remove from the "facts base" all the fact that satisfies the
conditions: the brand of the car "Mazda", the color of the
body "Red". After deletion, print the data from the "fact
database".

180

22

Remove from the "facts base" the first fact that satisfies the
conditions: the brand of the car "Mitsubishi", the color of
the body "Silver". After deletion, print the data from the
"fact database".

23

Remove from the "facts base" all the fact that satisfies the
conditions of the car brand "Hyundai", the color of the
body "Red". After deletion, print the data from the "fact
database".

24

Remove from the "facts base" the first fact that satisfies the
conditions: the car brand "Skoda", model "Octava". After
deletion, print the data from the "fact database".

25

Remove from the "facts base" all cars belonging to
"Elena". After deletion, print the data from the "fact
database".

26

Add the following fact to the "fact base": car ("Alfa
Romeo", "156", 2005, "Green", "Vitaly"). The new fact
must take precedence over the existing facts. After entering
the fact, save the "fact base" in a file named [Artist's
name].

27

Add the following fact to the "fact base": car ("Audi", "80",
1995, "Red", "Vladimir"). The new fact must be placed
after the existing facts. After entering the fact, save the
"fact base" in a file named [Artist's name].

28

Add the following fact to the "fact base": car ("BMW",
"X5", 2011, "Black", "Dmitry"). The new fact must take
precedence over the existing facts. After entering the fact,
save the "fact base" in a file named [Artist's name].

29

Add the following fact to the "fact base": emperor
("Chrysler", "Saratoga", 2000, "Gold", "Yuriy"). The new
fact must be placed after the existing facts. After entering
the fact, save the "fact base" in a file named [Artist's
name].

30

Add the following fact to the "fact base": car ("Citroen",
"Berlingo", 2006, "White", "Ignat"). The new fact must
take precedence over the existing facts. After entering the
fact, save the "fact base" in a file named [Artist's name].

31

Add the following fact to the "fact base": emperor
("Chery", "Amulet", 2009, "Blue", "Nikita"). The new fact
must be placed after the existing facts. After entering the
fact, save the "fact base" in a file named [Artist's name].

32

Add the following fact to the "fact base": car ("Daewoo",
"Espero", 1997, "Brown", "Elena"). The new fact must take
precedence over the existing facts. After entering the fact,

181

save the "fact base" in a file named [Artist's name].

33

Add the following fact to the "fact base": emperor
("Daihatsu", "Rocky", 2006, "White", "Hope"). The new
fact must be placed after the existing facts. After entering
the fact, save the "fact base" in a file named [Artist's
name].

34

Add the following fact to the "fact base": emperor
("Dodge", "Spirit", 1994, "Black", "Gennady"). The new
fact must take precedence over the existing facts. After
entering the fact, save the "fact base" in a file named
[Artist's name].

35

Add the following fact to the "fact base": car ("Fiat",
"Punto", 2009, "Gray", "Olga"). The new fact must be
placed after the existing facts. After entering the fact, save
the "fact base" in a file named [Artist's name].

36

Add the following fact to the "fact base": car ("Ford",
"Fiesta", 2007, "Silver", "Alexander"). The new fact must
take precedence over the existing facts. After entering the
fact, save the "fact base" in a file named [Artist's name].

37

Add the following fact to the "fact base": car ("Honda",
"Civic", 2006, "Black", "Pavel"). The new fact must be
placed after the existing facts. After entering the fact, save
the "fact base" in a file named [Artist's name].

38

Add the following fact to the "fact base": car ("Infiniti",
"QX 56", 2008, "White", "Oksana"). The new fact must
take precedence over the existing facts. After entering the
fact, save the "fact base" in a file named [Artist's name].

39

Add the following fact to the "fact base": car ("Jeep",
"Grand Cherokee", 2005, "Black", "Denis"). The new fact
must be placed after the existing facts. After entering the
fact, save the "fact base" in a file named [Artist's name].

40

Add the following fact to the "fact base": car ("KIA",
"Rio", 2009, "Blue", "Hope"). The new fact must take
precedence over the existing facts. After entering the fact,
save the "fact base" in a file named [Artist's name].

41

Add the following fact to the "fact base": car ("Lancia",
"Theme", 2007, "White", "Oleg"). The new fact must be
placed after the existing facts. After entering the fact, save
the "fact base" in a file named [Artist's name].

42

Add the following fact to the "fact base": car ("Land
Rover", "Freelander", 2010, "Black", "Ivan"). The new fact
must take precedence over the existing facts. After entering
the fact, save the "fact base" in a file named [Artist's

182

name].

43

Add the following fact to the "fact base": car ("Lexus",
"LX-470", 2008, "Black", "Natalia"). The new fact must be
placed after the existing facts. After entering the fact, save
the "fact base" in a file named [Artist's name].

44

Add the following fact to the "fact base": car ("Mercedes-
Benz", "B-class", 2005, "Silver", "Yuriy"). The new fact
must take precedence over the existing facts. After entering
the fact, save the "fact base" in a file named [Artist's
name].

45

Add the following fact to the "fact base": emperor
("Pontiac", "Firebird", 2005, "Gold", "Paul"). The new fact
must be placed after the existing facts. After entering the
fact, save the "fact base" in a file named [Artist's name].

46

Add the following fact to the "fact base": car ("Porsche",
"911", 2004, "Gray", "Sergey"). The new fact must take
precedence over the existing facts. After entering the fact,
save the "fact base" in a file named [Artist's name].

47

Add the following fact to the "fact base": car ("Renault",
"Clio", 2009, "White", "Victor"). The new fact must be
placed after the existing facts. After entering the fact, save
the "fact base" in a file named [Artist's name].

48

Add the following fact to the "fact base": tsar ("Saab",
"9000", 2007, "Black", "Nikita"). The new fact must take
precedence over the existing facts. After entering the fact,
save the "fact base" in a file named [Artist's name].

49

Add the following fact to the "fact base": car ("Seat",
"Toledo", 2011, "Silver", "Georgy"). The new fact must be
placed after the existing facts. After entering the fact, save
the "fact base" in a file named [Artist's name].

50

Add the following fact to the "fact base": car ("Toyota",
"Avensis", 2011, "White", "Vitaly"). The new fact must
take precedence over the existing facts. After entering the
fact, save the "fact base" in a file named [Artist's name].

6.16. List of соntrol questions on the task № 8

1. What predicates are used to add and remove facts?
2. Where are the predicates of the internal database of facts stored?
3. What does the facts section consist of?
4. Name the restrictions imposed on predicates announced in the facts

section.

183

5. What is the name of the internal facts base?
6. What are the keywords determ and single used for?
7. What are the predicates assert, asserta and assertz used for, and what is

the difference between them?
8. What are the predicate consult used for?
9. What are the restrictions on the files that consult can work with?
10. What are the predicates retract and retractall used for, and what is the

difference between them?
11. What is the predicate save used for?
12. List the keywords that define the properties of facts.

Recommended books

1. Walter Enders. Applied Econometric Time Series. Wiley, 2-е

издание, 2004,
460 Р.
2. Philip H. Franses & Dick van Dijk. Nonlinear Time Series Models in

Empirical Finance. Cambridge University Press, 2000, 296 Р.
3. Daniel Pe na, George C. Tiao & Ruey S. Tsay (редакторы). A Course

in Time
Series Analysis. Wiley, 2001, 496 Р.
4. Ruey S. Tsay. Analysis of Financial Time Series. Wiley, 2005, 640 Р.
5. Enders, W. & P. Chung (1995). Instructor’s Manual to Accompany

Applied Econometric Time-Series. John Wiley & Sons: New York.: Chung, P.,
W. Enders, L. Shao & J. Yuan (2004).

6. Tolvi, J. (2003). Analysis of Financial Time Series by R. S. Tsay. The
Statistician 52, 128–129 Р.

7. Eric J. Larson The Myth of Artificial Intelligence : Why Computers
Can't Think the Way We Do. - Cambridge, Mass., United States. – 2021. – 320
P.

8. Charles Petzold. - The Annotated Turing : A Guided Tour Through
Alan Turing's Historic Paper on Computability and the Turing Machine. –
Auflage. – 2008. – 384 P.

9. Стьюарт Рассел, Питер Норвиг. – искусственный интеллект.
Современный подход. Том 1. Решение проблем. Знания и рассуждения. –
Диалектика. – 2021. – 706 С.

10. Ian Barkin, Jochen Wirtz , Pascal Bornet : Intelligent Automation :
Learn how to harness Artificial Intelligence to boost business & make our world
more human. - Independently Published. – 2020. – 432 P.

184

11. Marco Iansiti , Karim R. Lakhani : Competing in the Age of AI :
Strategy and Leadership When Algorithms and Networks Run the World. -
Harvard Business Review Pres. – 2020. – 288 P.

12. Nick Bostrom: Superintelligence : Paths, Dangers, Strategies. –-
Oxford, United Kingdom. – 2016.- 432 P.

13. Tom Taulli : The Robotic Process Automation Handbook : A Guide to
Implementing RPA Systems. - Berkley, United States. – 2020. – 344 P.

14. Thomas M. Siebel : Digital Transformation : Survive and Thrive in an
Era of Mass Extinction; .- Rosetta Books. - 2019.- 256 P.

15. Kate Crawford : Atlas of AI.- Yale University Press.- 2021. – 336 P.
16. Panos Louridas ; Algorithms - MIT Press Ltd . – 2020. – 424 P.

Additions

Additions A. Determining relationships based on facts

Prolog (PROgramming in LOgic) is the most popular logic programming
language.

The language is based on the theory of calculation of first-order predicates
and methods of proving theorems.

The main method of calculation is resolution (proof procedure).
Procedurality of the Prologue is expressed in determining the order of actions to
achieve the goal (how to get).

Supports declarative (descriptive) programming style – programs are
designed in terms of accurately defining the problem situation without writing a
program in the form of a sequence of instructions for performing the algorithm.

Prolog is a programming language for symbolic, non-numerical
calculations. It is designed to solve problems related to objects and relationships
between objects.

Fig.A.1. Family tree

pam tom

bob

ann

pat

jim

liz

185

The figure shows an example – Family Tree. The fact that Tom is one of
Bob's parents can be written in Prolog as follows: parents (tom, bob).

In this example, the relationship name is parents, tom, bob – relationship
parameters (names are written in lower case). The entire relationship tree, which
is depicted in the diagram in Prolog, is defined by the following program:

parents (pam, bob).
parents (tom, bob).
parents (tom, liz).
parents (bob, ann).
parents (bob, pat).
parents (pat, jim).
Each of the 6 sentences that make up the program reveals one fact about

the parent relationship. For example, the fact parents (tom, bob) is a specific
instance of a relationship, such an instance of a relationship is called a
relationship. In general, the ratio is the set of all its instances.

1. We can ask if Bob is one of Pat's parents. ? – parents(bob,pat). Маємо
відповідь:

Yes
2. ? – parents(liz,pat).
No
3. ? – parents(tom,ben).
No
Question: Who is the father of liz?
? – parents(X,liz).
X= tom
Who are Bob's children?
? – parents(bob, X).
There should be 2 answers: first there will be an answer – X-ann then to

get the second answer enter a semicolon and Prolog will get the next answer X-
pat. If after that to demand the additional decision the system will answer No.

You can ask a general question:
? – parents(X,Y).
After that Prolog will be looking for all the pairs one by one
X – pam
Y – bob
X – tom
Y – bob
…….
To stop outputting solutions, press Enter instead;
This program can be asked a more difficult question: who are the parents

of Jim's grandparents. The ratio of grandparents is not defined, so this query is
divided into 2 stages:

1 - who is one of Jim's parents, for example, W.

186

2 - who is one of the parents of U.

Fig.A.2 The grandparent relationship, expressed as a composition of two

parent relationships

In this scheme, the grandparents relationship is expressed as a

composition of two parents relationships.
This complex query is written in Prolog as follows:
? - parents (Y, jim), parents (X, Y).
Reply:
X - bob
Y - path
This complex query can be read as follows: find the following X and Y

that meet the following 2 requirements: parents (Y, jim) and parents (X, Y).
The result will be the same if you change the query as follows:
? - parents (X, Y), parents (Y, jim).

Similarly, you can ask who are Tom's grandchildren:
? - parents (tom, X),? - parents (X, Y).
The answer will be as follows:
X - bob
Y - ann
X - bob
Y - path
Question: Do Ann I Rat have common parents?
The task is divided into 2 stages:
1 - who is one of the parents Ann (X)
2 - whether X is one of the parents of Pat
The corresponding question in Prolog is as follows:
? - parents (X, ann), parents (X, pat).
Reply:
X – bob

This example illustrates the following concepts:

187

- in Prolog, you can define relationships such as parents by specifying
objects that satisfy that relationship;

- the user can ask the system about the relationships that are defined in
the program;

- prolog consists of sentences, each of which ends with a period;
- relationship parameters can be defined as objects or constants (such as

tom and ann), as well as general objects (such as X and Y). Objects of the first
type are called atoms, objects of the second type are called variables);

- questions to the system consist of one or more goals. The sequence of
goals is such as parent (X, ann), patent! X, pat) means the conjunction of goals:
X is one of Anne's parents and X is one of Pat's parents;

- the word “goal” is used for such questions because the Prolog system
perceives questions as goals that need to be achieved;

- the answer to the question can be positive or negative, depending on
whether the goal has been achieved;

- if there are several answers to the question, Prolog know all of them.

Exercises

1.1. Provided the parent relation is defined as described in this section
(see fig.1), indicate what answer the Prolog system will give to the following
questions?

a)? – parent (jim, X).
b)? – parent (X, jim).
c)? – parent (pam, X), parent (X, p a t).
r)? – parent (pam, X), parent (X, Y), parentt Y, jim).
1.2. State the following relationship questions in Prolog parent.
a) Who is Pat's parent?
b) Does Liz have a baby?
c) Who is Pat's grandfather or grandmother?

Valuation of business on the basis of rules

Adoptionally, the butt stock is equipped with the same methods.
Introduced information about the person and the life to become, as they will take
part in the parents. Dodamo onset facts in the program (here female - woman,
feminine - female, male - male. Masculine - male, sex - to become).

female (pam).
male (tom).
female (liz).
female (ann).
male (jim).
Here is the introduction of male and female. Quality of business є unary

(one-off). Binarny is used for the type of parents, but there are links between

188

pairs of objects. Unary vidnoshennya vikoristovuyutsya for the nakedness of the
simple authorities of the objects, as the stench can be mother or not mother.

Information that is announced in 2 unary reports can be presented in
binary reports:

sex (pam, feminine).
sex (tom, masculine).
sex (bob, masculine).
As a next addition, we will add to the program the relationship offspring

(offspring) – (son or daughter), the opposite of the relationship parents. This
relationship can be defined as follows. offspring (liz, tom) we have parents (tom,
liz).

But the relation offspring can be defined differently, using the relation
parents: Y is the son or daughter of X, if X is the father of Y.

If parents (tom (X), liz (Y)) true -> offspring (liz (Y), tom (X)).
offspring (Y, X): - parents (X, Y). - it reads as follows: For all X and Y if

X is the father of Y, then Y is the son or daughter of X.
Such sentences are called rules.
The difference between facts and rules: facts are logical conclusions that

always matter truth. Rules take on the value of truth when certain conditions are
met. It is believed that the rules consist of 2 parts: the condition – the right part
of the rule, the conclusion – the left part of the rule.

In the expression offspring (Y, X): - parents (X, Y) the left part is called
the head of the sentence, and the right part - the body of the sentence.

Concretization of variables
Let's ask the program the question: is Liz the daughter of Tom?
To apply a rule to Liz and Tom objects, you must replace Liz with Y, and

X must replace Tom with this rule (this rule can be applied to any X and Y
object).

offspring (liz, torn): - parent (tom, l and z).
Let's introduce some more information about family relationships.
For all X and Y, X is the mother of Y, if X is one of the parents of Y and

X is a woman.
This statement can be written as follows:
Mother (X, Y): - parent (X, Y), female (X).
A comma between the conditions indicates the conjunction of these

conditions, which means that both conditions must be true.
Relationships such as parent, offspring and mother can be illustrated by

the following diagrams. Graph nodes refer to the parameters of the relationship.
The lines between the nodes correspond to binary (double ratio). Unary relations
are denoted in the form

189

Fig. A.3. Relationship scheme granparent, offspring и mother

marks on the corresponding objects with the name of the relationship. In the
form of arcs denote relations that are determined on the basis of other relations.

According to this scheme, the grandparent relation can be written as
follows.

grandparent (X, Z): - parent (X, Y), parent (Y, Z).

Consider the scheme of relations sister

Fig. A.4. Determining the relationship sister

For any X and Y, X is the sister of Y if:

1) X and Y have a common parent and
2) X ─ woman.

The graph presented in Prolog can be represented as follows:

sister (X, Y): - parent (Z, X), parentf Z, Y), female (X).

Here X and have a common relative Z. This can be paraphrased as

follows:
If Z1 is a relative of X and Z2 is a relative of B then Z1 = Z2.
Now you can ask the system questions:

190

? – sister (arm, pat).
The answer is yes.

So the system can be asked: s i s t e r (X, pat).
The prologue will give an unexpected answer:
X – ann
X – pat.

So pat is her sister. After all, the rules on sisters did not state that they

should be the same. To correct this, it is necessary to specify that X and Y must
be different. In the Prolog system there is a relation different and it is satisfied if
X and Y are not equal. An improved rule for the sister relationship might look
like this:

Sister (X, Y): -parent (Z, X), parent (Z, Y), female (X), different (X, Y).

Conclusions:
1. Programs in the Prologue can be supplemented by introducing new

sentences
2. Sentences in the Prologue belong to 3 types: facts, rules, questions
3. With the help of facts you can enter into the program information that is

always true
4. With the help of rules you can enter information into the program that

is true depending on the specified condition
5. By asking questions, the user can find out what information is true
6. Sentences Prologue consists of head and body. A body is a comma-

separated list of goals. Comos are considered signs of conjunction.
7. Facts are sentences that have a head and an empty body. Questions

have only the body. The rules have a head and a non-empty body.
8. In the process of calculation, changes can be replaced by other objects.

In this case, the variable becomes specified.

Additions B. Perceptroni

The perceptron is one of three methods for solving tasks for creating

images of objects on a model of a hypothetical mechanism of a robot and a
human brain. The structure of the model is postulated for a long time (the
postulate is firmness, pretense, which, when prompted by a scientific theory,
accept without proof, such as an axiom). With this approach, the level of
biological knowledge, or hypotheses about biological mechanisms and a change
of mind, on which the models of these mechanisms are based. It is necessary to
note that the perceptron at the dawn of his own judgment was seen only as a
heuristic model of the mechanism of the brain. Since then, the stench has

191

become the main scheme in the inducement of piecewise-linear models to
develop images.

Heuristics is a science, how I create creativity, methods, how to become
victorious in the face of the new and in the new. Heuristic methods (another
name is Heuristics) allow you to customize the process of resolving tasks.
Significant interest in the connection with the possibility of broadcasting a
number of tasks (developing objects, bringing theorems, etc.), in which people
cannot date an accurate algorithm for scanning with additional technical data.
By the method of Heuristics motivating models for the process of resolving
certain new tasks.

Fig. B.1. Perceptroni

In the most simple view, the perceptron (fig. B.1) is stored in a number of

sensitive (sensory) elements (S-elements), which receive input signals. S-
elements in the same rank are tied with a combination of associative elements
(A-elements), types of which appear from zero only, if there is a large number of
S-elements, for one A-elements are connected with reacting elements (R-
elements) links, performance efficiency (v) of some changes and changes in the
process of creation. It is important to combine R-elements to become the
reaction of the system, in order to make the object fit, so that it is developed to a
singing image. If only two images are recognized, then only one R-element will
appear in the perceptron, which in two reactions is positive and negative. If there
are more than two images, then a specific R-element is installed for the skin
image, and the output of such an element is a linear combination of A-elements:

192

n

i
iijjj xvR

1

, (B.1)

where

jR – reaction j element R; xi reaction I element A; vij – link from

the i-th A-element to the j-th R-element; Ѳj - threshold of the j-th R-element.
Similarly, write down the ryvnyannya of the i-th A-element:

S

k
kii yx

1

. (B.2)

Here the signal yk can be continuous, but most often it takes only two

values: 0 or 1. Signals from S-elements are fed to the inputs of A-elements with
constant weights equal to one, but each A-element is associated only with a
group by chance selected S-elements.

Suppose you need to teach the perceptron to distinguish between two
images V1 and V2. We assume that in the perceptron there are two R-elements,
one of which is intended for the image V1, and the other – the image V2. The
perceptron will be trained correctly if the output R1 exceeds R2, when the
recognized object belongs to the image V1, and vice versa. The division of
objects into two images can be performed using only one R-element. Then the
objects of the image V1 must correspond to the positive reaction of the R-
element, and the objects of the image V2 – the negative.

The perceptron is trained by presenting a learning sequence of images of
objects belonging to images V1 and V2. In the process of learning the weights
of vi A-elements change. In particular, if an error-correction reinforcement
system is used, the correctness of the decision made by the perceptron is taken
into account first of all. If the solution is correct, then the weights of the bonds
of all triggered A-elements leading to the R-element that gave the correct
solution increase, and the weights of the failed A-elements remain unchanged.
You can leave the weight of the triggered A-elements unchanged, but reduce the
weight of the failed ones. After the learning process, the perceptron itself,
without a teacher, begins to classify new objects.

If the perceptron operates according to the described scheme and it allows
only connections from binary S-elements to A-elements and from A-elements to
a single R-element, then such a perceptron is called an elementary a-perceptron.
Usually the classification C (W) is set by the teacher. The perceptron must
develop in the process of learning the classification conceived by the teacher.

With regard to perceptrons, several sound theorems have been formulated
and proved, two of which determine the basic properties of the perceptron
below.

193

Theorem 1. The class of elementary a-perceptrons for which there is a
solution for any conceived classification is not empty.

This theorem states that for any classification of an educational sequence
it is possible to choose such a set (from an infinite set) of A-elements in which
the intended division of an educational sequence by means of a linear decisive
rule will be carried out.

Theorem 2. If for some classification C (W) a solution exists, then in the
process of learning a-perceptron with error correction, which begins with an
arbitrary initial state, this solution will be reached within a finite period of time.

The meaning of this theorem is that if in relation to the intended
classification we can find a set of A-elements in which there is a solution, then
within this set it will be achieved in a finite period of time.

Usually discuss the properties of an infinite perceptron, ie a perceptron
with an infinite number of A-elements with different connections with S-
elements (a complete set of A-elements). In such perceptrons the solution
always exists, and once it exists, it is achievable in a-perceptrons with error
correction.

The structure of the induced perceptron is generalized. A very interesting
area of research is multilayer perceptrons and perceptrons with cross-links, but
the theory of these systems has not yet been developed.

Neural networks

Neural network model with back propagation. A biological neuron is
modeled as a device that has several inputs (dendrites) and one output (axon).
Each input is associated with a certain weighting factor (w), which characterizes
the bandwidth of the channel and evaluates the degree of influence of the signal
from this input on the signal at the output. Depending on the specific
implementation, the signals processed by the neuron may be analog or digital (1
or 0). In the body of the neuron there is a weighted summation of the input
excitations, and then this value is an argument of the activation function of the
neuron, one of the possible variants of which is presented in Fig. B.3.

194

Fig. B.3. Artificial neuron

Being connected in a certain way, neurons form a neural network. The

work of the network is divided into learning and adaptation. Training means the
process of adaptation of the network to the proposed reference samples by
modifying (according to certain algorithms) the weights of connections between
neurons. It should be noted that this process is the result of the algorithm of the
network, rather than pre-embedded human knowledge, as is often the case in
artificial intelligence systems.

Among the various structures of neural networks (NM), one of the most
well-known is the multilayer structure, in which each neuron of an arbitrary
layer is associated with all axons of neurons of the previous layer or, for the first
layer, with all NM inputs. Such NM are called fully connected. When there is
only one layer in the network, the algorithm of its training with the teacher is
quite obvious, because the correct initial states of the neurons of the single layer
are known, and the adjustment of synaptic connections goes in a direction that
minimizes the error at the network output. According to this principle, an
algorithm for learning a single-layer perceptron is built, for example. In turn, in
multilayer networks, the optimal initial values of neurons of all layers, except
the latter, are usually unknown, and two or more layered perceptron can no
longer be taught, guided only by the magnitude of errors at the outputs of the
NM. One solution to this problem is to develop sets of output signals that
correspond to the inputs for each layer of NM, which is usually a very time
consuming operation and not always feasible. The second option is a dynamic
adjustment of the weights of synapses (connections), during which the weakest
connections are usually selected and changed by a small amount in one direction
or another, and only those changes are preserved that caused a decrease in the
output error. the entire network. Obviously, this method of "ticking", despite its
simplicity, requires cumbersome routine calculations. And finally, the third,
more acceptable option - the propagation of error signals from the outputs of the

195

NM to its inputs, in the direction opposite to the direct propagation of signals in
normal operation. This NM learning algorithm is called the backpropagation
procedure. It will be considered further.

According to the least squares method, the minimized objective function
of the NM error is the value:

 ,)(
2

1
)(

,

2
,

)(
,

pj
pj

N
pj dywE (B.3)

where
)(

,
N
pjy – the real initial state of the neuron j of the output layer N of the

neural network when applied to its inputs of the p-th image; djp is the ideal
(desired) initial state of this neuron.

The summation is performed for all neurons of the source layer and for all
images processed by the network. Minimization is carried out by the method of
gradient descent, which means adjusting the weights as follows:

,)(

ij

n
ij

w

E
w

 (B.4)

where wij – the weight of the synaptic connection connecting the i-th neuron of
the layer n –1 with the j-th neuron of the layer n, η is the coefficient of learning
speed, 0 <η <1.

,
ij

j

j

j

jij w

s

s

dy

y

E

w

E

 (B.5)

where yj still means the output of neuron j, and sj means the weighted sum of its
input signals, ie the argument of the activation function. Since the factor dyj / dsj
is a derivative of this function by its argument, it follows that the derivative of
the activation function must be defined along the entire abscissa. In this regard,
the single jump function and other activation functions with inhomogeneities are
not suitable for the considered NM. They use such smooth functions as a
hyperbolic tangent or a classic sigmoid with an exponent. In the case of a
hyperbolic tangent:

.1 2
s

ds

dy
 (B.6)

196

And the third factor
ij

j

w

s

 is obviously equal to the output of the neuron of

the previous layer)1(n
iy .

As for the first factor in (A.7), it is easily decomposed as follows:

)1(

 n

jk

k

k

k k kj

k

k

k

kj

w
ds

dy

y

E

y

s

ds

dy

y

E

y

E
 (B.7)

The summation of k is performed among the neurons of the layer n + 1.

Introducing a new variable

,)(

j

j

j

n
j

ds

dy

y

E

 (B.8)

we obtain a recursive formula for calculating quantities
)(n

jd ayer n of the

values older layer n+1.

,)1()1()(

j

j

k

n
jk

n
k

n
j

ds

dy
w

 (B.9)

For the source layer

 ,)()()(

j

j

i
N

i
N

i
ds

dy
dy (B.10)

Now we can write (B.4) in the open form:

.)1()()(n
i

n
j

n
ij yw (B.11)

Sometimes, to give the weight correction process some inertia, which

smooths out the sharp jumps when moving on the surface of the objective
function, (B.11) is supplemented by the value of the change in weight on the
previous iteration

).)1()1(()()1()()()(n
i

n
j

n
ij

n
ij ytwtw (B.12)

197

where μ – inertia coefficient, t is the number of the current iteration.

Thus, the complete algorithm for learning NM using the backpropagation
procedure is built as follows:

1. Apply to the network inputs one of the possible images and in the
normal operation of the NM, when the signals propagate from the inputs to the
outputs, calculate the values of the latter. You have to remember that

M

i

n
ij

n
i

n
j wys

0

)()1()(, (B.13)

where M – the number of neurons in the layer n – 1 з урахуванням нейрона з
постійним вихідним станом n+1, that sets the offset;

)()1(n
ij

n
i xy – i-th input

of the neuron j layer n.

),()()(n
j

n
j sfy (B.14)

where f() – sigmoid.

,)0(
qq Iy (B.15)

where

qI – q-th component of the vector of the input image.

2. To calculate
)(Nd for the source layer by the formula (B.10). Calculate

by the formula (B.11) or (B12) weight changes
)(Nw layer N.

3. Розрахувати за формулами (B.9) and (B.11) (or (B.9) and (B.12)) in

accordance
)(nd and

)(nw for all other layers, n = N –1, ... 1.
4. Adjust all weights in NM

).()1()()()()(
twtwtw

n
ij

n
ij

n
ij (B.16)

If the network error is significant, go to step 1. Otherwise, end.
The networks in step 1 are alternately randomly presented with all the

training images, so that the network, figuratively speaking, does not forget some
as you remember others. The algorithm is illustrated in Fig. B.4. From
expression (B.11) it follows that when the initial value goes to zero, the
effectiveness of training is significantly reduced. With binary input vectors, on
average, half of the weights will not be adjusted, so the range of possible values
of neuron outputs [0,1] is desirable to shift within [-0.5, +0.5], which is achieved

198

by simple modifications of logistics functions. For example, a sigmoid with an
exponent will turn into:

xae
xf

1

1
5.0)((B.17)

The considered NM has several "bottlenecks". First, in the process of

learning there may be a situation where large positive or negative values of
weights will shift the operating point on the sigmoids of many neurons in the
saturation region. Small values of the derivative of the logistics function will
lead in accordance with (B9) and (B10) to stop learning, which paralyzes NM.
Second, the application of the gradient descent method does not guarantee that a
global rather than a local minimum of the objective function will be found. This
problem is associated with another, namely - with the choice of the speed of
learning. Proof of the convergence of learning in the process of reverse
propagation is based on derivatives, ie weight gain and, accordingly, the speed
of learning must be infinitesimal, but in this case, learning will be unacceptably
slow. On the other hand, too much weight correction can lead to permanent
instability in the learning process. Therefore, the quality of η is usually chosen
as a number less than 1, but not very small, for example, 0.1, and it may
gradually decrease during training. In addition, to avoid accidental hits in local
minima, sometimes, after the values of the weights are stabilized, η briefly
greatly increased to begin the gradient descent from a new point. If repeating
this procedure several times brings the algorithm to the same state of the NM,
we can more or less confidently say that a global maximum has been found, and
not some other. There is another method of excluding local minima, and at the
same time paralysis of NM, which consists in the use of stochastic NM, but it is
better to talk about them separately.

199

Fig. B.4. The work of the algorithm
Neural networks: learning without a teacher

The main feature that makes learning without a teacher attractive is his
"independence". The learning process, as in the case of learning with a teacher,
is to adjust the weights of the synapses. Some algorithms change the structure of
the network, ie the number of neurons and their relationships, but such
transformations are better called a broader term - self-organization, and in this
chapter they will not be considered. Obviously, the adjustment of synapses can
be carried out only on the basis of information available in the neuron, ie its
state and already existing weights. Based on this reasoning and, more
importantly, by analogy with the known principles of self-organization of nerve
cells, Hebb's learning algorithms are constructed.

Hebb's signaling method is to change the weights according to the
following

 rule:
)()1()1()(n

j
n

iijij yytwtw , (B.18)

200

where)1(n
iy is the initial value of the neuron i layer (n - 1),

)(n
jy – the initial

value of the neuron j layer n;)(twij
and)1(twij

 – the weight of the synapse

connecting these neurons at iterations t and t - 1, respectively; – coefficient of
learning speed. Hereinafter, n means an arbitrary layer of the network. When
learning this method, the connections between excited neurons are strengthened.

There is also a differential method of teaching Hebb.

)1()()1()()1()()()()1()1(
tytytytytwtw

n
j

n
j

n
i

n
iijij ,

(B.19)

where)()1(
ty

n
i
 and)1()1(

ty
n

i – the initial value of the neuron i layer n - 1,

respectively, on iterations of t and t - 1;)()(
ty

n
j and)1()(ty

n
j – the same for

neuron j layer n. As can be seen from formula (17), the most intensively studied
synapses connecting neurons, the outputs of which have changed most
dynamically in the direction of increase.

The complete learning algorithm using the above formulas will look like
this:

1. At the initialization stage, all weights are assigned small random
values.

2. The input image is fed to the inputs of the network, and the excitation
signals are propagated in all layers according to the principles of classical
directforward (feedforward) networks, ie for each neuron is calculated weighted
sum of its inputs, which then applies the activation (transmitting) function of the

neuron. it turns out its initial value)(n
iy 1,...,0 iMi ,, where

iM is the

number of neurons in layer i; 1,...,0 Nn , and N is the number of layers in

the network. 3. Based on the obtained initial values of neurons according to
formula (B.18) or (B.19) there is a change in weights.

 4. Cycle from step 2 until the original network values are stabilized with
the specified accuracy. The use of this new method of determining the
completion of learning, different from that used for the reverse propagation
network, due to the fact that the adjustable synapse values are not actually
limited.

 In the second step of the cycle, all the images from the input set are
alternately presented. It should be noted that the type of responses to each class
of input images is not known in advance and will be an arbitrary combination of
states of the neurons of the output layer due to the random distribution of
weights at the stage of initialization. However, the network is able to generalize
similar images, assigning them to one class. Testing a trained network allows
you to determine the topology of classes in the source layer. To bring the

201

feedback of the trained network to a convenient form, you can supplement the
network with one layer, which, for example, according to the algorithm of
learning a single-layer perceptron must be forced to reflect the initial reactions
of the network in the necessary images.

Another algorithm for learning without a teacher – Kohonen's algorithm –
involves adjusting synapses based on their values from the previous iteration.

)1()()1()()1(
twtytwtw ij

n
iijij (B.20)

From the above formula it is seen that the training is reduced to
minimizing the difference between the input signals of the neuron coming from

the outputs of the neurons of the previous layer)(n
iy , and the weights of its

synapses
The complete learning algorithm has approximately the same structure as

in Hebb's methods, but in step 3 a neuron is selected from the whole layer, the
synapse values of which are as similar as possible to the input image, and the
weight adjustment according to formula (B.20) is performed only for it. This so-
called accreditation may be accompanied by inhibition of all other neurons in
the layer and the introduction of the selected neuron in saturation. The choice of
such a neuron can be made, for example, by calculating the scalar product of the
vector of weights with a vector of input values. The maximum product is given
by the winning neuron. Another option is to calculate the distance between these
vectors in p-dimensional space, where p is the size of the vectors.

1

0

2)1()(
p

i
ij

n
ij wyD , (B.21)

where j is the index of the neuron in the layer n, i is the summation index of the
neurons of the layer (n - 1), wij is the weight of the synapse connecting the
neurons; the outputs of the neurons of the layer (n - 1) are the input values for
the layer n. It is not necessary to take the root in formula (B.21), as only the
relative estimation of different Dj is important.

In this case, "wins" the neuron with the shortest distance. Sometimes,
neurons that very often receive accreditation are forcibly excluded from
consideration in order to "equalize the rights" of all neurons in the layer. The
simplest version of this algorithm is to inhibit the newly won neuron. When
using Kohonen algorithm training, there is a practice of normalization of input
images, as well as – at the stage of initialization – and normalization of the
initial values of weights.

1

0

2/
n

j
jii xxx , (B.22)

202

where xi is the i-th component of the vector of the input image or the vector of
weights, and n is its dimension.

This reduces the duration of the learning process.
Initialization of weights by random values can lead to different classes,

which correspond to densely distributed input images, merge or, conversely,
split into additional subclasses in the case of close images of the same class. To
avoid this situation, the convex combination method is used. Its essence is that
the input normalized images can be transformed:

n
taxtax ii

1
))(1()(, (B.23)

where xi is the i-th component of the input image, n is the total number of its
components, a (t) is the coefficient that changes in the learning process from
zero to one, resulting in first the network inputs are almost identical images, and
over time they are increasingly converging on the weekend.

The weights are set at the initialization step equal to the value:

n
wo

1
 , (B.24)

where n is the dimension of the weight vector for the neurons of the initialized
layer.

Based on the above method, neural networks of a special type are built –
the so-called self-organizing features – self-organizing feature maps (this
established translation from English, in my opinion, is not very successful,
because it is not about changing the network structure, but only about adjusting
synapses). For them, after selecting from the layer n of the neuron j with the
minimum distance Dj (A.21) teaches by formula (A.20) not only this neuron, but
also its neighbors located in the vicinity of R. The value of R in the first
iterations is very large, so all neurons learn , but over time it decreases to zero.
Thus, the closer the end of training, the more accurately determined the group of
neurons corresponding to each class of images.

Hopfield and Hemming neural networks

Among the various configurations of artificial neural networks (NM),
there are those in the classification of which according to the principle of
learning, strictly speaking, neither learning with a teacher nor learning without a
teacher is suitable. In such networks, the synapse weights are calculated only
once before the network begins to operate on the basis of information about the
data being processed, and all network training is reduced to this calculation. On

203

the one hand, the presentation of a priori information can be seen as a teacher's
help, but on the other - the network actually just remembers the samples before
the input of real data, and can not change their behavior, so talk about the
reverse link connection with the "world" (teacher) is not necessary. Among the
networks with a similar logic, the most well-known are the Hopfield network
and the Hemming network, which are commonly used to organize associative
memory. Then we will talk about them.

The block diagram of the Hopfield network is shown in Fig. B.5. It
consists of a single layer of neurons, the number of which is both the number of
inputs and outputs of the network. Each neuron is connected by synapses to all
other neurons, and has one input synapse through which the signal is input.
Output signals are usually formed on axons.

The problem solved by this network as associative memory is usually
formulated as follows. There is a set of binary signals (images, sound digits,
other data describing objects or process characteristics) that are considered
exemplary. The network must be able to select ("remember" from partial
information) the corresponding sample (if any) from any arbitrary non-ideal
signal submitted to its input or "give a conclusion" that the input data do not
correspond to any of the samples. In the General case, any signal can be
described by the vector X = {xi: i = 0, ..., n - 1}, n is the number of neurons in
the network and the dimension of the input and output vectors. Each element xi
is either +1 or -1. Denote the vector describing the k-th sample by Xk, and its

components, respectively: k
ix , k = 0, ..., m - 1, m is the number of samples.

When the network recognizes (or "remembers") any sample based on the data
presented to it, its outputs will contain it, ie Y = Xk, where Y is the vector of the
original values of the network: Y = {yi: i = 0, ..., n - 1}. Otherwise, the original
vector will not match any of the samples. If, for example, the signals are some
images, then, displaying graphically the data from the network output, you can
see a picture that completely coincides with one of the models (in case of
success) or "free improvisation" of the network (in case of failure).

204

Fig. B.5. Block diagram of the Hopfield network

At the stage of network initialization, the synapse weights are set as

follows:

ji

jixx
w

m

k

k
j

k
i

ij

,0

,
1

0
 (B.25)

where i and j – indices, respectively, of presynaptic and postsynaptic neurons;

k
ix and

k
jx – i-th та j-th vector elements of the k-th sample.

The algorithm of network operation is as follows (p – iteration number):
An unknown signal is applied to the network inputs. In fact, its

introduction is carried out by direct setting of axon values:

 yi(0) = xi, i = 0,...,n – 1, (B.26)

therefore, the designation on the circuit of the network of input synapses in the
explicit form is purely conditional. Zero in parentheses to the right of yi means
zero iteration in the network cycle.

A new state of neurons is calculated

1

0

1,...,0),()1(
n

i
iijj njpywps

, (B.27)

and new axon values

205

)]1([)1(psfpy jj

 (B.28)

where f is the activation function in the form of a jump, shown in Fig. B.6. a.

Fig. B.6. Activation function

Check whether the original values of the axons have changed since the
last iteration. If so – go to step 2, otherwise (if the outputs have stabilized) – the
end. The source vector is the sample that best combines with the input data

As mentioned above, sometimes the network cannot recognize and
outputs a non-existent image. This is due to a limited network capability issue.
For the Hopfield network, the number of images to be stored m should not
exceed approximately 0.15n. In addition, if the two images A and B are very
similar, they may cause cross-associations in the network, ie the presentation of
vector A to the inputs of the network will lead to the appearance of vector B at
its outputs and vice versa.

When it is not necessary for the network to explicitly issue a sample, that
is, it is sufficient, say, to obtain a sample number, the associative memory is
successfully implemented by the Hamming network. This network is
characterized, compared to the Hopfield network, lower memory costs and
computational volume, which becomes apparent from its structure (Fig. B.7).

The network consists of two layers. The first and second layers have m
neurons, where m is the number of samples. The neurons of the first layer have
n synapses connected to the inputs of the network (forming a fictitious zero
layer). The neurons of the second layer are interconnected by inhibitory
(negative feedback) synaptic connections. A single positive feedback synapse
for each neuron is connected to its own axons.

206

Fig. Fig. B.7. Block diagram of the Hamming network.

The idea of the network is to find the distance of Hamming from the
tested image to all samples. The Hamming distance is the number of bits that
differ in two binary vectors. The network must select a sample with a minimum
Hamming distance to an unknown input signal, which will activate only one
network output corresponding to the specified sample.

At the stage of initialization, the weights of the first layer and the
threshold of the activation function are assigned the following values:

1,...,0,1,...,0,
2

 mkni
x

w
k
i

ij
, (B.29)

1,...,0,2/ mknTk
 (B.30)

where is the i-th element of the k-th sample
The weighting factors of the inhibitory synapses in the second layer are

taken to be equal to some value 0 < e <1 / m. The synapse of a neuron
associated with its own axon has a weight of +1.

The algorithm of operation of the Hamming network is as follows:
1. An unknown vector X = {xi: i = 0, ..., n - 1} is fed to the network

inputs, based on which the states of neurons of the first layer are calculated (the
superscript in parentheses indicates the layer number

1

0

)1()1(1,...,0,
n

i
jiijjj mjTxwsy . (B.31)

207

After that, the obtained values initialize the values of the axons of the
second layer:

1,...,0,)1()2(mjyy jj
. (B.32)

Обчислити нові стани нейронів другого шару:

1

0

)2()2(1,...,0,),()()1(
m

k
kjj mjjkpypyps (B.33)

and the value of their axons:

1,...,0)],1([)1()2()2(mjpsfpy jj
 (B.34)

The activation function f has the form of a threshold (Fig. B.6.b), and the

value of F must be large enough that any possible values of the argument do not
lead to saturation.

4. Check whether the outputs of the neurons of the second layer have
changed during the last iteration. If so – go to step 2. Otherwise – the end.

The evaluation of the algorithm shows that the role of the first layer is
quite conditional: using once in step 1 the values of its weights, the network no
longer accesses it, so the first layer can be excluded from the network (replaced
by a matrix of weights).

Addition C. Method of group consideration of arguments

 Least squares method

Before beginning the consideration of MGCA, it would be useful to
mention or learn for the first time the method of least squares – the most
common method of adjusting linearly dependent parameters.

For example, consider the MNC for three arguments. Let the function T =
T (U, V, W) be given by the table, ie from experience the numbers Ui, Vi, Wi, Ti
(i = 1, ... n) are known. We will look for the relationship between this data in the
form:

cWbVaUWVUT),,((C.1)

where a, b, c are unknown parameters.

208

Select the values of these parameters so that was the smallest sum of the
squares of the deviations of the known data Ti and theoretical Ti = aUi + bVi +
cWi, ie the sum:

n

i
iiii cWbVaUT

1

2 min)((C.2)

The value of σ is a function of three variables a, b, c. A necessary and

sufficient condition for the existence of a minimum of this function is the
equality of zero partial derivatives of the function σ for all variables, is:

0,0,0

cba

 (C.3)

Since:

n

i
iiiii

n

i
iiiii

n

i
iiiii

WcWbVaUT
a

VcWbVaUT
b

UcWbVaUT
a

1

1

1

)(2

)(2

)(2

 (C.4)

then the system for finding a, b, c will look like:

n

i

n

i

n

i

n

i
iiiiiii

n

i

n

i

n

i

n

i
iiiiiii

n

i

n

i

n

i

n

i
iiiiiii

WTWcVWbWUa

VTWVcVbVUa

UTWUcVUbUa

1 1 1 1

2

1 1 1 1

2

1 1 1 1

2

 (C.5)

this system is solved by any standard method of solving systems of linear
equations (Gauss, Jordan, Seidel, Cramer).

Consider some practical examples of finding approximate functions:
1. y = ax

2 + bx + g.
The problem of selection of coefficients a, b, g is reduced to the solution

of the general problem at:
T = y, U = x2, V = x, W = 1, a = a, b = b, g = c.

209

2. f (x, y) = a sin (x) + b cos (y) + g / x.
The problem of selection of coefficients a, b, g is reduced to the solution

of the general problem at:
T = f, U = sin (x), V = cos (y), W = 1 / x, a = a, b = b, g = c.
If we extend MNCs to the case with m parameters,

n

i

m

ii cuT
1

2

1

min

 (C.6)

then by reasoning similar to the above, we obtain the following system of linear
equations:

mmmmmm

mm

mm

uTuucuucuuc

uTuucuucuuc

uTuucuucuuc

...

...

...

...

2211

22222121

11212111

 (C.7)

where, n

iiv

m

ii uuTT
11

, .

Borrowing algorithms for processing information in nature is one of the
main ideas of cybernetics. The "selection hypothesis" states that the algorithm of
mass selection of plants or animals is the optimal algorithm for processing
information in complex problems. At mass selection some quantity of seeds is
sown. As a result of pollination, complex hereditary combinations are formed.
Breeders choose some of the plants in which the properties they are interested in
are most pronounced (heuristic criterion). The seeds of these plants are collected
and re-sown to form new, even more complex combinations. After a few
generations, the selection stops and its result is optimal. If you excessively
continue the selection, then there will be "incuht" - degeneration of plants. There
is an optimal number of generations and the optimal number of seeds selected in
each of them.

MGCA algorithms reproduce the scheme of mass selection shown in Fig.
1. They have generators of combinations that are complicated from row to row,
and threshold self-selection of the best of them. The so-called "complete"
description of the object

j = f(x1, x2, x3, ..., xm),
where f is some elementary function, such as a power polynomial, is replaced by
several series of "partial" descriptions:

1st row of selection: y1 = f(x1x2), y2 = f(x1x3), ..., ys = f(xm–1xm),
2 st row of selection: z1 = f(y1y2), z2 = f(y1y3), ..., zp = f(ys–1ys),

where s = c2, p = 2
sc , etc.

210

The input arguments and intermediate variables are combined in pairs,
and the complexity of the combinations on each row of information processing
increases (as in mass selection) until a single model of optimal complexity is
obtained. Each partial description is a function of only two arguments.
Therefore, its coefficients are easy to determine according to the training
sequence with a small number of interpolation nodes. Excluding intermediate
variables (if possible), you can get an "analogue" of the full description.
Mathematics does not prohibit both of these operations. For example, ten
interpolation nodes can be obtained by estimating the coefficients of
polynomials of the hundredth degree, etc.

Fig. C.1. General scheme of construction of MGCA algorithms (selection
of the blackest tulip) for the experimental field, which has the possibility of

expansion (equivalent to full search), and at a constant field size (equivalent of
selection while maintaining the freedom of choice of solutions F = const)

Only a number of the most regular variables are skipped from row to row
of selection. The degree of regularity is estimated by the magnitude of the
standard error (mean for all variables selected in each generation, or for one of
the most accurate change) on a single test sequence. Sometimes a correlation
coefficient is used as an indicator of regularity.

Rows of selection are increased as long as the regularity increases. As
soon as the minimum error is reached, the selection should be stopped to avoid
"incuht". It is practically recommended to stop the selection even a little before
reaching the full minimum, as soon as the error begins to fall too slowly. This
leads to simpler and more reliable equations.

Наукове видання

SCHERBAN V.Y., DEMKIVSKIY E.O., DEMKIVSKA T.I.,
SHRAMCHENKO B.L., REZANOVA V.G.

Methods and systems of artificial
intelligence

Підписано до друку 22.06.2022 р.
Формат 60х84/16. Папір офсетний.

Ум. друк. арк. 10,81
Наклад 200 прим.

Видано ТОВ "Фастбінд Україна"
Свідоцтво про внесення суб'єкта видавничої справи до

державного реєстру видавців, виготiвникiв
i розповсюджувачiв видавничої продукції

ДК 6324 вiд 31.07.2018 р.

