УДК 541.127; 537.56; 544.144.7; 547.21; 546.226-325; 546.713

ПРО МЕХАНІЗМИ РЕАКЦІЙ НОРМАЛЬНИХ АЛКАНІВ У СІРЧАНОКИСЛИХ РОЗЧИНАХ КОМПЛЕКСІВ МАРГАНЦЮ(ІІІ) / МАРГАНЦЮ(ІІ)

Волкова Л.К.¹, Опейда Л.І.², Пастернак О.М.³

¹Інститут фізико-органічної хімії і вуглехімії ім. Л.М. Литвиненка НАН України, відділ хімії вугілля, м. Київ, Україна, e-mail: volkovalk@gmail.com

²Відділення фізико-хімії горючих копалин Інституту фізико-органічної хімії і вуглехімії ім. Л.М. Литвиненка НАН України, м. Львів, Україна, e-mail: opeida i@yahoo.co.uk

³Маріупольський державний університет, кафедра раціонального природокористування та охорони навколишнього середовища, м. Маріуполь, Україна, e-mail: o.pasternak@mdu.in.ua

Для реакцій нормальних алканів (*n*-AlkH) у сірчанокислих розчинах комплексів Mn(III)/Mn(II) досліджено кореляції субстратної селективності, відношення констант швидкості $k_{\text{відн}}=k(n-AlkH)/k(C_2H_6)$ у ряду від етану до октану, з кількістю вторинних (втор.) зв'язків C–H (n(CH)_{sec}) і з потенціалом іонізації (*I*); проведені квантовохімічні розрахунки термодинаміки можливих маршрутів. Знайдено, що кореляція $lgk_{\text{відн}}-I$ виконується краще ніж $lgk_{\text{відн}}-n(CH)_{\text{sec}}$. Наявність дослідного значення *k* для етану дозволила з принципу адитивності оцінити для *n*-AlkH константу *k*(S)_{відн}, яка обумовлена *втор*-С–Н. Величина $lgk(S)_{\text{відн}}$ корелює з n(CH)_{sec} і з *I* з однаковою точністю. Розрахунки підтверджують висновки щодо активної частинки – радикала HSO4[•], який утворюється в реакції Mn(III)+HSO4⁻ \rightarrow Mn(II)+HSO4[•], показують значну перевагу цієї реакції й те, що гомоліз С–H, HSO4[•]+C₆H₁₄ \rightarrow H₂SO4+C₆H₁₃[•], термодинамічно дозволенний. Результати узгоджуються з конкуренцією двох лімітуючих стадій – відрив електрона, впливовіша, й гомоліз *втор*-С–H.

Ключові слова: *н*-алкани, марганець(III), зв'язки С-Н, потенціал іонізації,

механізм, метод РМ7.

ON MECHANISMS OF REACTIONS OF NORMAL ALKANES IN SULFURIC ACID SOLUTIONS OF MANGANESE (III)/MANGANESE(II) COMPLEXES

Volkova L.K.¹, Opeida L.I.², Pasternak O.M.³

¹LM Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Department of coal chemistry, Ukraine, e-mail: volkovalk@gmail.com

²Department of Physical Chemistry of Fossil Fuels InPOCC National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: opeida i@yahoo.co.uk

³Mariupol State University, department of environmental management and environmental protection, Mariupol, Ukraine, e-mail: o.pasternak@mdu.in.ua

For the reactions of normal alkanes (*n*-AlkH) in sulfuric acid solutions of the Mn(III)/Mn(II) complexes, the correlations of the substrate selectivity, the ratio of rate constants $k_{rel.} = k(n-AlkH)/k(C_2H_6)$ in a series from ethane to octane, with the number of secondary (sec.) C–H bonds (n(CH)_{sec}) and with the ionization potential (*I*) were studied; carried out quantum-chemical calculations of the thermodynamics of possible routes. Found that correlation $lgk_{BiдH}-I$ perfoms better than $lgk_{BiдH}-n(CH)_{sec}$. The presence of an experimental value of *k* for ethane made it possible, within the framework of the additivity principle, to estimate for *n*-AlkH the constant $k(S)_{rel.}$, which is due to *sec*-C–H. The value of $lgk(S)_{rel.}$ correlates with $n(CH)_{sec}$ and with *I* with the same accuracy. Calculations confirms the conclusions about the HSO4⁺ radical as an active species that is formed in the reaction Mn(III)+HSO4⁺→Mn(II)+HSO4⁺, show a significant advantage of this reaction and the fact that C–H homolysis, HSO4⁺ + C₆H₁₄→ H₂SO4 + C₆H₁₃⁺, is thermodynamically allowed. The results are consistent with the competition of two limiting stage – electron abstraction, more influential, and cleavage of *sec*-C–H.

Keywords: *n*-alkanes, metal complexes, C–H bonds, ionization potential, mechanism, PM7 methods.

Основним джерелом вуглеводнів (RH) для хімічної індустрії є природний газ і нафта. В залежності від будови молекул RH, вуглеводні розділяють на три основні групи: парафінові, або алкани (R=Alk, AlkH, в тому числі нормальні, *n*-AlkH, і розгалужені, або *ізо*-алкани, *i*-AlkH), нафтенові, або циклани (R = c-Alk, c-AlkH) й ароматичні, або арени (R=Ar,

ArH). Сучасні технології переробки вуглеводнів в хімічні речовини не завжди ефективні, оскільки потребують високих температур ($T > 800^{\circ}$ C), тиску й складних стадій. Селективна функціоналізація зв'язків C–H вуглеводнів залишається актуальною фундаментальною та прикладною проблемою хімії [1–3]. Один із напрямків м'якої ($T < 200^{\circ}$ C, атмосферний тиск) активації зв'язків C–H є вивчення механізмів взаємодії RH з оксидантами (окисниками, металокомплексами, електрофілами, радикалами й таке інше), які позначимо для стислості Ox.

Ця робота присвячена встановленню природи лімітуючих стадій функціоналізації ковалентних і неполярних насичених зв'язків С–Н у ряду *н*-алканів в їх реакціях із комплексами Mn(III)/Mn(III) в сірчанокислих розчинах.

Мета дослідження: встановлення природи лімітуючих стадій в реакціях нормальних алканів у сірчанокислих розчинах комплексів марганцю(III)/марганцю(II) із використанням кінетичних даних цих перетворень та електронних характеристик *n*-AlkH; квантово-хімічна оцінка термодинаміки можливих маршрутів активації зв'язку С–H в *н*-алканах в системі Mn(III)/Mn(II)–H₂SO₄.

Матеріали і методи дослідження.

У роботі використані результати кінетичних досліджень субстратної селективності першої стадії реакції – стадії активації *н*-алканів в сірчанокислих розчинах марганцю(III)/марганцю(II), які отримані кінетичним розподільчим методом у лабораторії Є.С. Рудакова [4-5]. Для встановлення природи лімітуючих стадій цих реакцій досліджено кореляції субстратної селективності *n*-AlkH від етану до октану з їх електронними характеристиками: кількістю зв'язків С–Н загальною, вторинних, їх відношенням та потенціалом іонізації. У розглянутих розчинах Ох – H₂SO₄ окислення метану не спостерігали; CH₄ використовували у кінетичних дослідженнях в якості внутрішнього стандарту.

149

Темодинамічні характеристики реагентів і реакцій обчислено квантовохімічним методом РМ7 (пакет програм МОРАС-2016). Як показано в роботах [6-8] отримані методом DFT, так і методом РМ7 результати з реактивності частинок в окисленні вуглеводнів іонами перехідних металів у H₂SO₄ задовільно узгоджуються між собою та з описаними в літературі природою активних частинок окисника й механізмом реакцій в таких системах.

Результати дослідження.

<u>Система Mn(III)/Mn(II) – H₂SO₄.</u>

Для гальмування розпаду марганця(III) в сірчаній кислоті до його розчину додають марганець(II) [4]. В розчинах Mn(III)/Mn(II) – H₂SO₄ кінетика окиснення *н*-алканів передається емпіричним рівнянням:

$$k_{1} = -\frac{1}{[n-\mathrm{AlkH}]} \frac{d[n-\mathrm{AlkH}]}{B_{\mathrm{T}}} = \frac{a[\mathrm{Mn(III)}]}{1+b[\mathrm{Mn(II)}]+c[\mathrm{Mn(III)}]},$$
(1)

де k_1 – константа швидкості першого порядку, в с⁻¹; *a*, *b* і *c* – параметри, в кг/моль с, кг/моль і кг/моль відповідно. Величини виміряних констант швидкості k_1 для реакцій *н*-алканів у ряду етан, пентан, гексан, гептан й октан в розчинах Mn(III)/Mn(II) – 90% H₂SO₄ при 90°C та [Mn(III)] і [Mn(II)] порядку 10⁻³–10⁻² моль/кг представлені в таблиці 1.

Кореляційні залежності констант швидкості *н*-алканів від їх електронних характеристик в реакціях з оксидантами.

Електронні характеристики *н*-алканів у ряду C_2 – C_8 , енергетичні й структурні, наведені в таблиці 1. До енергетичних віднесені енергії зв'язків (D_{C-} _H) первинного (перв.) і вторинного (втор.) С–Н [9-10], та потенціали іонизації (I) [11]. До структурних – кількість втор. зв'язків С–Н (n(CH)_{sec}), загальна кількість С–Н (n(CH)_{all}), їх відношення n(CH)_{sec}/n(CH)_{all}.

При розриві зв'язку С–Н у лімітуючий стадії варто очікувати, що швидкість реакції буде залежати від енергії С–Н. За даними [9-10] усереднена енергія зв'язків С–Н (D_{C-H} в кДж/моль) для *перв*-С–Н дорівнює (422 ± 2), для *втор*-С–Н $D_{C-H} = 412 \pm 2$. Усереднена різниця в енергіях D_{C-H} для *втор*-С–Н і

перв-С–Н не висока, $\Delta D_{C-H} = 8$ кДж/моль.

Таблиця 1. Кількість зв'язків С–Н $n(CH)_{all}$, $n(CH)_{sec}$, їх відношення $n(CH)_{sec}$ / $n(CH)_{all}$ і потенціали іонізації (*I* в кДж/моль) *н*-алканів. Виміряні константи швидкості реакцій *n*-AlkH у розчинах Mn(III)–90% H₂SO₄ – k_1 (c⁻¹) при 90°C [4]; відносні константи $k_{відн} = k$ (*n*-AlkH)/ k (C₂H₆).

N⁰	<i>n</i> -AlkH	n(CH) _{sec}	n(CH) _{all}	$\frac{n(\text{CH})_{\text{sec}}}{n(\text{CH})_{\text{all}}}$	Ι	Mn(III)/Mn(II)	
						$k_1 \cdot 10^3$	$k_{\scriptscriptstyle m Biдh}$
1	C_2H_6	0	6	0	1115,5	0,31	1
2	C_3H_8	2	8	0,25	1051,8	_	—
3	C ₄ H ₁₀	4	10	0,4	1016	_	—
4	C ₅ H ₁₂	6	12	0,5	986	1,4	4,52
5	C ₆ H ₁₄	8	14	0,57	977,5	1,7	5,48
6	C7H16	10	16	0,625	958	2,3	7,42
7	C ₈ H ₁₈	12	18	0,67	945,7	3,0	9,68

3 принципу адитивності величина k складається з суми констант: $k(n-AlkH) = k(C_2H_6) + k(S),$ тоді $k(S) = k(n-AlkH) - k(C_2H_6),$ (2)

де k(n-AlkH) і $k(C_2H_6)$ – виміряні константи швидкості для h-алканів у ряду C_2 – C_8 і для етану відповідно; k(S) – константа, яка обумовлена наявністю втор. зв'язків C–H у n-AlkH, для етану k(S)=0. Це припущення дозволяє запропонувати для k(S) кореляції від кількості *втор*-C–H:

 $k(S) = a_{S'} n(CH)_{sec} + b_{S}$ (a) $lgk(S) = a_{S'} n(CH)_{sec} + b_{S'}$ (6), (3)

де $a_S = k(S)/n(CH)_{sec}$ і $a_{S'} = lgk(S)/n(CH)_{sec}$ – тангенси кутів нахилу, b_S і $b_{S'}$ – відрізки, що відтинаються на осі ординат для рівнянь (3a) і (3б) відповідно. Перевірка lgk(S) від електронних характеристик можлива в ряду C_3 – C_{10} без етану, оскільки для нього k(S)=0.

У тому самому ряду *н*-алканів С₂-С₈ потенціал іонизації (І) зменшується на

169,8 кДж/моль (табл. 1). При переносі електрону в стадії, що лімітує швидкість реакції, величини *k* будуть корегувати зі значеннями *I* для *n*-AlkH:

$$k = -a_I \cdot I + b_I$$
 (a) i $\lg k = -a_{I'} \cdot I + b_{I'}$ (6), (4)

де $a_I = k / I$ і $a_{I'} = \lg k / I -$ тангенси кутів нахилу, b_I та $b_{I'} -$ відрізки, що відтиняються на осі ординат для рівнянь (4а) і (4б) відповідно.

Окрім рівнянь (3) і (4) використані співвідошення:

$$k=a_{\text{sec/all}} \cdot (n(CH)_{\text{sec}}/n(CH)_{\text{all}}) + b_{\text{sec/all}} \quad (a) \quad i \quad lgk=a_{(\text{sec/all})'} \cdot (n(CH)_{\text{sec}}/n(CH)_{\text{all}}) + b_{(\text{sec/all})'} \quad (6),$$
(5)

де $a_{sec/all} = k/(n(CH)_{sec}/n(CH)_{all})$ і $a_{(sec/all)} = lgk/(n(CH)_{sec}/n(CH)_{all})$ – тангенси кутів нахилу, $b_{(sec/all)}$ і $b_{(sec/all)'}$ – відрізки, що відтинаються на осі ординат для рівнянь (5а) і (5б) відповідно. Між $n(CH)_{sec}/n(CH)_{all}$ та *I* в ряду C₂–C₁₀ кореляція:

 $I = -251,2 \cdot (n(CH)_{sec}/n(CH)_{all}) + 1115,3$ R²=0,998 (6) виконується з високою точністю, тоді як у ряду C₅-C₈ із значно меншою, R²=0,949.

В залежності від природи стадії, що лімітує взаємодію *n*-AlkH + Ox, точність виконання рівнянь (3)–(5) буде різною. Більш високі R² очікуються для рівн. (3) при розриві *втор*-С–Н; для рівн. (4) при переносі електрона. Для більш впевненого вибору природи лімітуючої стадії можуть бути використані рівн. (5)– (6). Несуттєві відмінності в точності виконання кожного з лінійних рівнянь (3)– (5) можуть свідчити про конкуренцію двох лімітуючих стадій, або взагалі про іншу її природу.

Субстратна селективність у реакціях н-алканів.

Величини k_1 у реакції кожного з *n*-AlkH у системі Mn(III)/Mn(II)–H₂SO₄ виміряні при однакових умовах і характеризують швидкості при одному порядку за [Ox]. Це дозволяє перейти від k_1 до відносних констант ($k_{\text{відн}}$), які розглядають як субстратну селективність. В якості «реперного» *н*-алкану вибрали етан:

$$k_{\rm Bigh.} = k_{1,n-{\rm AlkH}} / k_{1,{\rm C2H6}}, \tag{7}$$

тому для етану $k_{\text{відн.}}=1$. Порівняння величин $k_{\text{відн}}$ у ряду С₂, С₅–С₈, табл.1, свідчить про низьку субстратну селективність й вагомий внесок *пере*-С–Н у

швидкість реакцій. Величина $k(C_2H_6)$ складає 20% від $k(C_3H_8)$ і знижується до 10% від $k(n-C_8H_{18})$. Використання $k_{\text{відн}}$ є більш простим і коректним, як для перевірки рівнянь (4)–(5), в яких замість величин k підставили $k_{\text{відн}}$, так і для порівняння субстратної селективності різних систем. В рівн. (3а) k(S) замінили на $k(S)_{\text{відн}}$:

$$k(\mathbf{S})_{\text{відн}} = k(n-\mathrm{AlkH})_{\text{відн}} - k(\mathbf{C}_2\mathbf{H}_6)_{\text{відн}} = k_{\text{відн}} - 1.$$
(8)

Для етану $k(S)_{відн}=0$. Використали як субстратну селективність $k_{відн}$, отриману з експериментальних k_1 (лінія 1 на рис. 1), так і розраховану з рівн. (8) $k(S)_{відн}$ (лінія 2 на рис.1). Перевірка залежностей $lgk(S)_{відн}$ від електронних характеристик можлива в ряду, починаючи з пропану, оскільки для етану k(S) і $k(S)_{відн}$ дорівнюють нулю.

<u>Природа лімітуючої стадії в реакціях *н*-алканів у розчинах</u> <u>Mn(III)/Mn(II).</u>

На рисунку 1 показано виконання рівнянь (3)–(5) як за дослідними значеннями $k_{\text{відн}}$ (лінії 1), так і за величинами $k(S)_{\text{відн}}$, розрахованими за рівнянням (8) (лінії 2). Залежності (4а), $k_{\text{відн}} - I$ (рис. 1в) та (5а), $k_{\text{відн}} - (CH)_{\text{sec}}/n(CH)_{\text{all}}$ (рис.1д) в усьому ряду С₂, С₅–С₈ нелінійні, тоді як у ряду С₅–С₈ виконуються лінійні кореляції $k(S)_{\text{відн}} - I$ з R² = 0,980, $k(S)_{\text{відн}} - n(CH)_{\text{sec}}/n(CH)_{\text{all}}$ з R² = 0,929 (лінії 2).

Рівняння (3а) в координатах $k_{відн}$ (або $k(S)_{відн}$) – $n(CH)_{sec}$ (рис.1а) та (3б), $lgk_{відн}$ – $n(CH)_{sec}$ (рис. 1б) виконуються з однаковою точністю, $R^2=0,970-0,969$. Найточніші кореляції (4б), $lgk_{відн}$ – I з $R^2=0,989$, $lgk(S)_{відн}$ – Iз $R^2=0,994$ (рис.1г) і (3б), $lgk(S)_{відн}$ – $n(CH)_{sec}$ з $R^2=0,994$ (рис.1б). Відповідно до рівняння (6), точність кореляцій (5б) (рис. 1е) добра, але трохи нижча ніж із потенціалом іонізації.

Розглянуті результати можуть свідчити про дві стадії, що конкурують, – перенос електрона й відрив атома Н із перевагою першої, оскільки $\lg k_{\rm відн}$ – *I* виконується точніше, R²=0,989, ніж $\lg k_{\rm відн}$ – n(CH)_{sec}, R²=0,969.

Рисунок 1. Залежність субстратної селективності $k_{\text{відн}}$ або lg $k_{\text{відн}}$ (лінія 1) і $k(S)_{\text{відн}}$ або lg $k(S)_{\text{відн}}$ (лінія 2) для реакцій *н*-алканів у ряду C₂, C₅–C₈ у розчинах Mn(III)/Mn(II) від n(CH)_{sec}, а) і б); *I* (кДж/моль), в) і г); n(CH)_{sec}/n(CH)_{all}, д) і е).

<u>Квантово-хімічні розрахунки ентальпій маршрутів досліджуваних</u> реакцій.

В таблиці 2 наведені розрахунки ентальпій можливих маршрутів перетворень *н*-гексану в сірчанокислих розчинах Mn(III)/Mn(II)₄. Найбільш вигідним є утворення радикала HSO₄• в реакції окиснення бісульфатного аніона сильним оксидантом марганець(III) у сірчаній кислоті ($E^{\circ} = 1,51B$), що узгоджується з раніше передбачуваною природою активної частинки. Подальший гомолітичний розрив зв'язку С–Н в *n*-C₆H₁₄ радикалом HSO₄• термодинамічно дозволений, що підтверджує попередні висновки [4-5]. Розрахунки взаємодій марганцю(III) з *н*-гексаном, реакції 2 і 4 в таблиці 2, демонструють значну термодинамічну перевагу гетероліза С–Н над гомолізом.

Таблиця 2. Зміна ентальпії (ΔH) при гомо- та гетеролітичному розриву втор. зв'язку С–H, а також при відриві електрона в реакціях *н*-гексану в системі Mn(III)/Mn(II) – H₂SO₄, розрахована методом PM7

N⁰		ΔΗ,			
		ккал/моль			
	H_2SO_4				
1	Mn(II	471 7			
ΔH	1407,09	-222,54	823,71	-110,85	-4/1,/
2	Mn(+3)	161 1			
ΔH	1407,09	-38,35	736,28	168,11	-404,4
3	HSO	28.0			
ΔH	-110,85	-38,35	-176,86	-10,39	-38,0
4	Mn(+3)	57 /			
ΔH	1407,09	-38,35	1321,73	-10,39	-37,4

Отримані методом РМ7 результати розрахунків ентальпій можливих реакцій *н*-гексану дозволили вибрати найбільш вигідні. Виявилось, що саме ці маршрути не заперечують, або узгоджуються, з раніше передбачуваними природою активних частинок оксиданта й механізмом їх дії в лімітуючий стадії, а також з висновками, отриманими із тестів субстратна селективність – електронні характеристики *n*-AlkH.

Висновки.

1. Для реакцій *н*-алканів (*n*-AlkH) у ряду від етану до октану в системі Mn(III)/Mn(II) — H₂SO₄ перевірені тести, які поєднують субстратну селективність, відношення констант швидкості $k_{\text{відн}} = k(n-\text{AlkH})/k(\text{C}_2\text{H}_6)$, із кількістю втор. зв'язків C–H (n(CH)_{sec}) і з потенціалами іонізації (*I*).

2. У ряду С₂, С₅–С₈ з найбільшою точністю виконується залежність $lgk_{відн}$ – *I*, R² = 0,989, тоді як $lgk_{відн}$ – n(CH)_{sec} описується R²=0,969. Величина $k(S)_{відн}$, що розрахована з принципа адитивності з дослідних значень $k_{відн}$ і обумовлена *втор*-С–H, $k(S)_{відн} = k(n-AlkH)_{відн} - k(C_2H_6)_{відн} = k(n-AlkH)_{відн}-1$, корелює з величиною n(CH)_{sec} і з *I* з однаковою найбільшою точністю, R²=0,994. Ці результати можуть свідчити про те, що швидкість реакції залежить від двох лімітуючих стадій – відрив електрона, впливовіша, та гомоліз зв'язку С–H.

3. Згідно результатам квантово-хімічних розрахунків у розчинах Mn(III)/Mn(II) найбільш вигідний процес (ΔH = -471,7 ккал/моль) – окиснення марганцем(III) бісульфатного аніона до радикала HSO₄•, який раніше був запропонований, як активна частинка, що безпосередньо реагує з алканами. Темодинамічно дозволений гомоліз зв'язку С–H, HSO₄• + C₆H₁₄ \rightarrow H₂SO₄ + C₆H₁₃• (-38,0), та в реакції Mn(III) + C₆H₁₄ (-57,4). Значно вигідніший гетероліз С–H (- 464,4) під дією марганцю(III).

Автори висловлюють подяку професору Опейді Й.О. за допомогу в інтерпретації залежностей субстратна селективність – електронні характеристики н-алканів та отриманих квантово-хімічних результатів.

Список літератури.

- Rudakov E. S. Stable organoplatinum complexesas intermediates and models in hydrocarbon functionalization / E. S. Rudakov, G. B. Shul'pin // J. Organometal. Chem. – 2015. – Vol. 793. – P. 4–16.
- Rudakov E. S. Hydrocarbon functionalization on palladium compounds in acidic solutions (a historical review) / E. S. Rudakov, G. B. Shul'pin // J. Organometal. Chem. – 2018. – Vol. 867. – P. 25–32.
- Chepaikin E. G. Homogeneous catalytic systems for the oxidative functionalization of alkanes: design, oxidants, and mechanisms / E. G. Chepaikin, G. N. Menchikova, and S. I. Pomogailo // Russ. Chem. Bull. 2019. –Vol. 68. No. 8. P.1465–1477.
- Рудаков Е.С. Окислительная активация насыщенных углеводородов в сернокислотных средах под действием металлокомплексов и окислителей / Е.С. Рудаков, А.И. Луцык // Нефтехимия. – 1980. – Т. 20. – № 2. – Р. 163–179.
- 5. Рудаков Е.С. Реакции алканов с окислителями, металлокомплексами и радикалами в растворах. Киев: Наук. думка, 1985. 248 с.
- Волкова Л.К. Влияние кислотности среды на скорость реакций окислительной функционализации углеводородов / Л.К. Волкова, И.А. Опейда // Кинетика и катализ. 2020. Т. 61, № 4. С. 509 519.
- Опейда Л.І. Про особливості початкової стадії окисненнягідроксифталіміду перманганатом калію / Л. І. Опейда, А. Ф.Попов // Доповіді НАН України. – 2016. – № 4.– С.88 – 91.
- Пастернак О. М. Квантово-хімічне дослідження механізму окисної функціоналізації зв'язків С–Н алканів сірчаною кислотою / О. М. Пастернак, Л. І. Опейда, Д. С. Семиволос, Л. К. Волкова // Фізикоорганічна хімія, фармакологія та фармацевтична технологія біологічно активних речовин. Зб. наук. праць. – 2019. – Вип. №2. – С. 95 – 105.

- Денисов Е.Т. Оценка энергий диссоциации связей по кинетическим характеристикам радикальных жидкофазных реакций / Е.Т. Денисов, В.Е. Туманов // Успехи химии. – 2005. – Т. 74, № 9. – С. 905–938.
- 10.Yu-Ran Luo. Comprehensive Handbook of Chemical Bond Energies. Taylor and Francis Group, LLC. 2007.
- 11. NIST Chemistry WEbBook DOI: https://doi.org/10.18434/T4D303 04.11.2020.