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ON EXPONENTIAL DICHOTOMY FOR ABSTRACT DIFFERENTIAL EQUATIONS
WITH DELAYED ARGUMENT

Andrii Chaikovs’kyi1,2 and Oksana Lagoda3 UDC 517.9

We consider linear differential equations of the first order with delayed arguments in a Banach space. We
establish conditions for the operator coefficients necessary for the existence of exponential dichotomy on
the real axis. It is proved that the analyzed differential equation is equivalent to a difference equation in
a certain space. It is shown that, under the conditions of existence and uniqueness of a solution bounded
on the entire real axis, the condition of exponential dichotomy is also satisfied for any bounded known
function. The explicit formula for projectors, which form the dichotomy, is found for the case of a single
delay.

Introduction

Let (X, ∥ · ∥) be a complex Banach space, let L(X) be a space of linear continuous operators in X. Consider
the differential equation

x′(t) =
m∑
k=1

Akx(t− k), t∈ R, (1)

where {Ak : 1 ≤ k ≤ m} ⊂ L(X). We call a function x ∈ C∞(R, X) that satisfies Eq. (1) a solution of this
equation.

For inhomogeneous equations of this type, conditions of existence and uniqueness of a solution bounded on
the entire axis in the form of a bounded known function and a formula for it are known [1, 2]. For equations without
delay, these conditions enable one to establish an exponential dichotomy. Indeed, for the equation

x′(t) = Ax(t) + y(t), t∈ R,

where A ∈ L(X), the known condition for the existence and uniqueness of a bounded solution on the entire axis
for an arbitrary bounded known function has the form

σ(A) ∩ {is | s∈ R} = ∅.

Under this condition, the spectrum of the operator A consists of two parts and the corresponding projectors P− and
P+ in the Riss decomposition [3] enable one to obtain an exponential dichotomy for the homogeneous equation

x′(t) = Ax(t), t∈ R,
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namely, there exist constants K > 0 and β > 0 such that

∥eAtP−∥ ≤ Ke−βt, t ≥ 0,

∥e−AtP+∥ ≤ Ke−βt, t ≥ 0.

However, for the equation with delay

x′(t) = Ax(t− 1) + y(t), t∈ R,

the situation is more complicated. The condition for the existence and uniqueness of a bounded solution on the
entire axis for an arbitrary bounded known function has the form

σ(A) ∩ {iseis | s∈ R} = ∅.

The curve in this formula is a double spiral that divides the complex plane into a countable number of bounded
parts. However, the belonging of the spectrum to one of these parts does not guarantee a dichotomy.

In the case of delay, the problem of an exponential dichotomy is studied by many known scientists. It is worth
noting the works by Hale [4, 5], Boichuk and Samoilenko [6, 7], Boichuk, Pokutnyi, and Zhuravlev [8, 9].

In particular, a generalized exponential dichotomy for differential equations with delayed argument in a finite-
dimensional space is established and investigated in [4, 5]. For a certain class of equations including equations of
the form (1), in a finite-dimensional case, the following statement is obtained:

Theorem 1 [5]. For any µ∈ R, there exist projectors Pµ
− and Pµ

+ and constants Kµ > 0 and γ2 > γ1 > 0

such that for a C0 -semigroup {T (t) : t ≥ 0} generated by Eq. (1), the condition of generalized exponential
dichotomy

∥T (t)Pµ
−∥ ≤ Kµe

(µ−γ2)t, t ≥ 0,

∥T (−t)Pµ
+∥ ≤ Kµe

−(µ−γ1)t, t ≥ 0,

is satisfied.

Note that a generalized dichotomy is weaker than a classical one.
In the present paper, we propose an approach that enables one to construct a difference equation equivalent to

a differential equation. By using this result, we establish an exponential dichotomy for Eq. (1). For an equation
with one delay, we give the explicit form of projectors generating a dichotomy.

Reduction of a Differential Equation to a Difference Equation

We introduce the spaces Z0 = C([0, 1], X) with uniform norm ∥ · ∥0 and Z1 = C1([0, 1], X) with norm
∥x∥1 = ∥x∥0 + ∥x′∥0, x ∈ Z1. For functions defined on a segment, by derivatives at ends, we mean to the
corresponding one-sided derivatives.



ON EXPONENTIAL DICHOTOMY FOR ABSTRACT DIFFERENTIAL EQUATIONS WITH DELAYED ARGUMENT 3

Lemma 1. If a function x ∈ C∞(R, X) is a solution of Eq. (1), then the sequence of functions {xn(t) =

x(t+ n), t ∈ [0, 1] : n∈ Z} ⊂ Z1 is a solution of the difference-integral equation

xn+1(t) = xn(1) +

m∑
k=1

Ak

t∫
0

xn+1−k(s)ds, t ∈ [0, 1], n∈ Z. (2)

Conversely, if a certain sequence of functions {xn : n ≥ 1} ⊂ Z1 is a solution of the difference-integral
equation (2), then the equalities

x(t) = xn(t− n), t ∈ [n, n+ 1), n∈ Z,

give a function x ∈ C∞(R, X), which is a solution of the differential equation (1).

Proof. If x is a solution of the differential equation (1), then

x′(t+ n+ 1) =

n∑
k=1

Akx(t+ n+ 1− k), t ∈ [0, 1], n∈ Z,

i.e.,

x′n+1(t) =

n∑
k=1

Akxn+1−k(t), t ∈ [0, 1], n∈ Z.

Integrating terms of the equation from 0 to t, we obtain

xn+1(t)− xn+1(0) =
n∑

k=1

Ak

t∫
0

xn+1−k(s)ds+

t∫
0

yn+1(s)ds, t ∈ [0, 1], n∈ Z.

Taking into account that xn+1(0) = x(n+ 1) = xn(1), n∈ Z, we obtain the required equality.
Conversely, if equality (2) is true, then, for t = 0, we have

xn+1(0) = xn(1), n∈ Z,

hence, x ∈ C(R, X). Differentiating equality (2), we obtain equality (1) (for the left-hand and right-hand deriva-
tives at integral points, we have values from different equations that coincide in view of continuity of the function
x). In particular, we get x ∈ C∞(R, X).

We introduce operators C1, . . . , Cm ∈ L(Z1) acting by the rules

(C1x)(t) = x(1) +A1

t∫
0

x(s)ds, t ∈ [0, 1],

(Ckx)(t) = Ak

t∫
0

x(s)ds, t ∈ [0, 1], 2 ≤ k ≤ m.
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Then the difference-integral equation (2) can be rewritten in the form

xn+1 =
m∑
k=1

Ckxn+1−k, n∈ Z. (3)

Note that it is convenient to rewrite this difference equation in the form

un+1 = Cun, n∈ Z, (4)

in the space Zm
1 with norm ∥w∥ =

∑m

k=1
∥wk∥1, where

un = (xn, xn−1, . . . , xn−m+1)
T ,

C =



C1 C2 C3 . . . Cm−1 Cm

I O O . . . O O

O I O . . . O O

O O I . . . O O

. . . . . . . . . . . . . . . . . .

O O O . . . I O


.

We investigate the existence of an exponential dichotomy for this equation under the condition

0 ̸∈ σ
(
itI −A1e

−it −A2e
−2it − . . .−Ame−mit

)
, t∈ R, (5)

which is the known necessary and sufficient condition for the existence of a unique bounded solution of the inho-
mogeneous equation corresponding to (1) [1].

Lemma 2. If condition (5) is satisfied, then

σ(C) ∩ S = ∅,

where S = {z ∈ C : |z| = 1} is a unit circle in the complex plane.

Proof. Let λ ∈ C\σ(C). This means that for an arbitrary v ∈ Zm
1 , there exists a unique u ∈ Zm

1 such that

Cu− λu = v.

By using the definition of the operator C, we obtain the equations

u1(1) +
m∑
k=1

Ak

t∫
0

uk(s)ds− λu1(t) = v1(t), t ∈ [0, 1],
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uk(t)− λuk+1(t) = vk(t), 1 ≤ k ≤ m− 1, t ∈ [0, 1],

or, for λ ̸= 0,

u1(1) +

m∑
k=1

Ak

t∫
0

λ1−ku1(s)ds− λu1(t) = w(t), t ∈ [0, 1],

w(t) = (Wv)(t) := v1(t) +
m∑
k=2

Ak

t∫
0

k∑
p=2

λp−kvp(s)ds, t ∈ [0, 1],

where the function w ∈ Z1 can be arbitrary for the corresponding choice of v. This integral equation for λ ̸= 0 is
equivalent to the boundary-value problem for the differential equation

m∑
k=1

Akλ
1−ku1(t)− λu′1(t) = w′(t), t ∈ [0, 1],

and the boundary condition u1(1)− λu1(0) = w(0).

We introduce the operator A = A(λ) =
∑m

k=1
Akλ

−k. If there exists a continuous inverse operator to

the operator
1

λ
eA − I, then, by standard methods, we easily verify that a unique solution of the boundary-value

problem is the function

u1(t) = ((C − λI)−1v)1(t) = − 1

λ

t∫
0

eA(t−s)w′(s)ds

+ eAt 1

λ

(
1

λ
eA − I

)−1
 1

λ

1∫
0

eA(1−s)w′(s)ds+ w(0)

, t ∈ [0, 1], w = Wv ∈ Z1. (6)

In particular, this is true for λ ∈ S, i.e., λ = eiφ, φ∈ R, because by the Dunford theorem on map of spectrum,
we have

σ

(
1

λ
eA − I

)
= {eµ − 1 | µ ∈ σ(−iφI +A1e

−iφ +A2e
−2iφ + . . .+Ame−miφ)} ̸∋ 0,

where we used that the condition µ ∈ σ(−iφI +A1e
−iφ +A2e

−2iφ + . . .+Ame−miφ) implies that

µ− 2πki ∈ σ(−i(φ+ 2πk)I +A1e
−i(φ+2πk) +A2e

−2i(φ+2πk) + . . .+Ame−mi(φ+2πk)), k∈ Z,

and, by the condition of the lemma, the last spectrum does not contain zero.
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Exponential Dichotomy

For Eq. (2), consider the evolutionary operator T (p), p∈ Z, that for every r∈ Z of the collection {xk :
r ≤ k ≤ r +m− 1} gives the collection {xk : r + p ≤ k ≤ r + p+m− 1}.

Theorem 2. If condition (5) is satisfied, then the difference-integral equation (2) rewritten in the equivalent
form (4) admits an exponential dichotomy: there exist subspaces Z+ and Z− of the space Zm

1 such that:

(i) the direct sum of Z− and Z+ is equal to the space Zm
1 ;

(ii) for the projector P− onto the subspace Z−, the estimate

∃L > 0 ∃q ∈ (0, 1) ∀p ≥ 0 : ∥T (p)P−∥1 ≤ Lqp

is true;

(iii) for the projector P+ onto the subspace Z+, the estimate

∃L > 0 ∃q ∈ (0, 1) ∀p ≥ 0 : ∥T (−p)P+∥1 ≤ Lqp

is true.

Proof. In view of Lemma 2, for Eq. (2) in the form (4), we can use the spectral Riss decomposition [3] and as
Z− and Z+ we take subspaces corresponding to parts of the spectrum C lying inside and outside a unique circle,
respectively. We obtain point 1. In addition,

∃L > 0 ∃q ∈ (0, 1) ∀p ≥ 0 : ∥CpP−∥1 ≤ Lqp,

∃L > 0 ∃q ∈ (0, 1) ∀p ≥ 0 : ∥C−pP+∥1 ≤ Lqp.

This yields estimates in points 2 and 3.

Corollary 1. In the special case m = 1 for the equation with one delay

x′(t) = A1x(t− 1), t∈ R, (7)

the operator C coincides with the operator C1 and acts in the space Z1, condition (5) can be rewritten in the
simpler form

σ(A1) ∩ {iteit | t∈ R} = ∅,

the condition of application of dichotomy is belonging of the function x1 to the subspace Z− or Z+, and projectors
onto the subspaces Z− and Z+ are given, respectively, by the relations

(P−x)(t) = x(t) + F (t)x(1) +

1∫
0

A1F (t− s)x(s)ds, t ∈ [0, 1],
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(P+x)(t) = −F (t)x(1)−
1∫

0

A1F (t− s)x(s)ds, t ∈ [0, 1],

where

F (t) = − 1

2πi

∫
S

(
λeA1λ − I

)−1
eA1λtdλ, t∈ R.

Proof. To obtain these relations, recall that the projector onto the subspace Z− has the form

P− = − 1

2πi

∫
S

(C − µI)−1dµ = |µ = 1/λ| = − 1

2πi

∫
S

1

λ2

(
C − 1

λ
I

)−1

dλ.

By using relation (6) and the notation B(λ) = A(λ−1) = A1λ, we obtain

(
1

λ2

(
C − 1

λ
I

)−1

y

)
(t) = − 1

λ

t∫
0

eB(λ)(t−s)y′(s)ds

+ eB(λ)t 1

λ

(
λeB(λ) − I

)−1

λ

1∫
0

eB(λ)(1−s)y′(s)ds+ y(0)

,

t ∈ [0, 1], λ∈ C\(σ(C) ∪ {0}).

Integrating by parts, we get

t∫
0

eB(λ)(t−s)y′(s)ds = y(t)− eB(λ)ty(0) +

t∫
0

B(λ)eB(λ)(t−s)y(s)ds.

Hence,

λ

1∫
0

eB(λ)(1−s)y′(s)ds+ y(0) = −
(
λeB(λ) − I

)
y(0) + λy(1) + λ

1∫
0

B(λ)eB(λ)(1−s)y(s)ds

= −(λeB(λ) − I)y(0) + λy(1)+(λeB(λ) − I)

1∫
0

B(λ)e−B(λ)sy(s)ds

+

1∫
0

B(λ)e−B(λ)sy(s)ds.
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Thus,

(
1

λ2

(
C − 1

λ
I

)−1

y

)
(t) = − 1

λ
y(t)− 1

λ

t∫
0

B(λ)eB(λ)(t−s)y(s)ds

+ eB(λ)t
(
λeB(λ) − I

)−1

y(1) +
1

λ

1∫
0

B(λ)e−B(λ)sy(s)ds



+
1

λ

1∫
0

B(λ)eB(λ)(t−s)y(s)ds.

We have

− 1

2πi

∫
S

(
− 1

λ
I

)
dλ = I, − 1

2πi

∫
S

(
− 1

λ
B(λ)eB(λ)(t−s)

)
dλ = B(0)eB(0)(t−s) = O.

In addition,

− 1

2πi

∫
S

(
1

λ

(
λeB(λ) − I

)−1
B(λ)eB(λ)(t−s)

)
dλ =

m∑
k=1

AkFk(t− s),

where

Fk(t) = − 1

2πi

∫
S

(
λk−1

(
λeB(λ) − I

)−1
eB(λ)t

)
dλ.

Since F1 = F and

Fk+1(t) = − 1

2πi

∫
S

(
λk−1

(
λeB(λ) − I

)−1
eB(λ)(t−1)

)(
λeB(λ) − I + I

)
dλ

= − 1

2πi

∫
S

λk−1eB(λ)(t−1)dλ+ Fk(t− 1) = Fk(t− 1), t∈ R, 1 ≤ k ≤ m− 1,

we have Fk(t) = F (t− k + 1), t∈ R, 1 ≤ k ≤ m. By using the defintion of the functions F and B, we get

(P−y)(t) = y(t) + F (t)y(1) +

1∫
0

A1F (t− s)y(s)ds.

Corollary 2. If x is a solution of the differential equation (7), then its components x+ = P+x and x− = P−x

are solutions of this equation that satisfy the estimates

∃K > 0 ∃β > 0 ∀t ≥ 0 : ∥x−(t)∥ ≤ Ke−βt,
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∃K > 0 ∃β > 0 ∀t ≤ 0 : ∥x+(t)∥ ≤ Keβt.

Proof. Since the projectors P− and P+ commute with the operator C = C1, applying them to both sides of
Eq. (4), we show that x− and x+ are solutions. Estimates follow from the estimates of the theorem.

Application to the Inhomogeneous Equation

Consider the inhomogeneous differential equation

x′(t) =
m∑
k=1

Akx(t− k) + y(t), t∈ R, (8)

where {Ak : 1 ≤ k ≤ m} ⊂ L(X). If y ∈ C(R, X) is the known function, then the function x ∈ C1(R, X) that
satisfies Eq. (1) is called a solution of this equation.

To use estimates obtained by an exponential dichotomy, consider the inhomogeneous equation for (2):

xn+1(t) = xn(1) +
m∑
k=1

Ak

t∫
0

xn+1−k(s)ds+ zn(t), t ∈ [0, 1], n∈ Z, (9)

where {zn : n ≥ 1} ⊂ Z1 is the known sequence and {xn : n ≥ 1} ⊂ Z1 is the required sequence.

Lemma 3. Suppose that for the given function y ∈ C(R, X), the function x ∈ C1(R, X) is a solution of
Eq. (8). Then the sequence of functions {xn : n∈ Z} ⊂ Z1 given by the equalities

xn(t) = x(t+ n), t ∈ [0, 1], n∈ Z,

is a solution of the difference-integral equation (9) in which

zn(t) =

t∫
0

y(s+ n+ 1)ds, t ∈ [0, 1], n∈ Z

(moreover, {zn : n∈ Z} ⊂ Z1).

Proof is similar to the proof of Lemma 1.
By using this lemma, we reduce Eq. (8) to the difference-integral equation (9), which, in turn, can be rewritten

in the form

xn+1 =

m∑
k=1

Ckxn+1−k + zn, n∈ Z. (10)

It is convenient to represent this difference equation in the form

un+1 = Cun + vn, n∈ Z, (11)
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in the space Zm
1 with norm ∥u∥ =

∑m

k=1
∥uk∥1, where

un = (xn, xn−1, . . . , xn−m+1)
T ,

vn = (zn, 0, . . . , 0)
T , n∈ Z.

The existence, uniqueness, and estimates of solutions of abstract difference equations of this type are studied,
in particular, in [10–12]. In particular, it is known that the existence and uniqueness of a bounded solution do not
change in the passage to this equation [10, 11].

In the presence of a dichotomy, Eq. (8) can be split into two equations in the spaces Z− and Z+, which
enables one to describe the asymptotic behavior at infinity [11].

In the case of one delay, a very simple result can be found. In this case, if x is a solution of the differential
equation (7), then its components x+ and x− given by the formulas

x+(t) = (P+xn)(t− n), t ∈ [n, n+ 1), n∈ Z,

x−(t) = (P−xn)(t− n), t ∈ [n, n+ 1), n∈ Z,

xn(t) = x(t+ n), t ∈ [0, 1], n∈ Z,

are solutions of the equations

x′−(t) = A1x−(t) + y−(t), t∈ R,

x′+(t) = A1x+(t) + y+(t), t∈ R,

where

y+(t) = (P+yn)(t− n), t ∈ [n, n+ 1), n∈ Z,

y−(t) = (P−yn)(t− n), t ∈ [n, n+ 1), n∈ Z,

yn(t) = y(t+ n), t ∈ [0, 1], n∈ Z.

On behalf of all authors, the corresponding author states that there is no conflict of interest.
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