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1 Introduction

Let (X,||-]|]) be a complex Banach space, L(X)
be the space of linear continuous operators in X,
I € L(X) be the identity operator. Let denote as
o(A) the spectrum of an operator A € L(X). Let
denote as S = {z€ C ||z| = 1} the unit circle in
the complex plane.

Let us consider the difference equation

(1)

where {A,, | n€Z} C L(X), {B, | n€Z} C
L(X), {yn | n€ Z} C X are known sequences,
{zn | n€Z} C X is a desired sequence. In the
paper we investigate the question of existence and
uniqueness of a bounded solution to the equation
(1).

It is known [1, chapter 7.6] that the equati-
on (1) of the first order has a unique bounded
solution {x,, | n€ Z} for any bounded sequence
{yn | n€ Z} iff an operators sequence fulfills a
condition of discrete dichotomy (by analogy wi-
th an exponential dichotomy which is well known
in the theory of differential equations). However,

Tpy1 = AnTp + BuTn_1+ Yn, Nn€ Z,
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checking of discrete dichotomy conditions is very
hard, so we need simpler conditions of existence
and uniqueness of a bounded solution for special
operators sequences.

[.V.Gonchar and M.F.Gorodnii investigated
the equation (1) in the papers [3, 4] for the case of
first order and one jump of an operator coefficient.

In the article [5] the equation (1) was investi-
gated in the case of the first order and several
jumps.

To formulate main obtained results we need
the following spectral decomposition. Assume A €
L(X) and the condition

c(A)NS =0

is true. Then the spectrum of the operator A is
decomposed into two parts, one of them is inside
of the unit circle S, the other is outside. Using the
theorem about decomposition |2, p. 445], we can
derive:

1) an existence of projectors P_(A), P, (A) €
L(X) such that

P_(A)+ P, (A) =T;
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2) decomposition of the space X to the direct
sum

X = X_(A)FX,(4), (2)

where

X_(4) = P_(A)X, X4(A) = PL(A)X

are subspaces in which corresponding operators
A_=P_(A)A, A, =P, (AA
have spectra

og(A_)=0c(A)Nn{ze C| |z| < 1}, (3)
o(Ay) =c(A)N{ze C||z| > 1}
accordingly.

In the paper [4] the following result was
proved.

Theorem 1.1. Let X be a complex Banach space
and G,U be some operators from L(X), which
satisfy the following conditions:

1)o(GINS =2, c(U)NS = ;

2) X = X_(G)+ X, (U).

Then the difference equation

Tn+1 = GSUn +Yn, N P ]-7

Tny1 = Uxp +yn, n <0,
has a wunique bounded i X  solution
{xn, | ne€Z} for any bounded in X

sequence {y, | n€ Z}.
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In [5] this result was generalized to the case of

a first order equation with several operator jumps

Tn4+1 = onn + Yn, n g 07
Tpt+l = Apzy + Yn, 1<n<<N-—-1, (4)
Tpt1 = ANTp + Yn, n = N.

Assume the conditions o(4p) N S = o,
o(Any) N S @ are true. Then each of the
operators Ag, Ay produces spectral decompositi-
on of the form (2). Let us denote

Py := P_(Ao), Poy = P(Ao),
Py_ = P_(AN), Pny = Pr(AN),
Xo— = X_(Ao), Xo+ := X1 (Ao),

Xn- = X_(AN), Xn+ = X1 (AN).
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Theorem 1.2. Let 0(Ag) NS =2, 0(AN) NS =
& and AN_1AN_o - ... - Ay is injection. Then
the equation (5) has a unique bounded soluti-
on {x, | n€Z} C X for any bounded sequence

{yn | n€ Z} C X iff
X =W+Xn_,
where
W ={AN_1AN_9-...- A1z | © € Xoyt}.

In this article we consider a generalization of
this result for a second order equation with an
operator coefficient which changes a finite number
of times:

Tpy1 = AoTn + BoTpn—1+yn, n <0,
Tn4+1 = Apxy + Bpxp—1 + Yns 1<n<N-1,
Tn+1 = ANTp + BNTp1 +Yn, n = N.

(5)
In the paper the result of the theorem 1.2 is
generalized to a second order equation (5).

2 Main results

First we rewrite our equation in the space X2,
where norm is defined as

(@1, 22)|] = V|2 |* + [Ja2]>-

Lemma 1. The equation (5) has a unique bounded
solution {z, | n€Z} C X for any bounded
sequence {y, | n€ Z} C X iff an equation

(6)

Upt1 = Cpup + vy, NE Z,

( ). nez

has a unique bounded solution {u, | n€ Z} C X?
for any bounded sequence {v, | n€ Z} C X2.

where
A, B,

I O

C, =

Proof. Necessity. For any bounded sequence {v,, =
(v, v2) | n€ Z} € X? we have system

n»-n

{

Since equation

1 1 2 4 1
Uy 1 = Apuy, + Bpug, + v, n€Z,
u? g =ul+ 02 neZ

1 1 1 2 1
un—l—l = Anun + Bnun—l + ann—l + Up, N € Z

has a unique bounded solution, so the system has
too.
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Sufficiency. Let for any bounded sequence
{yn | n€Z} C X put v, = (yn,0), neZ.
Then there is a unique bounded solution {u, =
(u,u2) | n€ Z} C X? of the equation (6) which
is equivalent to a system

U‘711+1 = Anu}l + Bnu% + Yn, ne Z7
Uy g =ub, n€ Z.

So, {x, =ul | n€ Z} C X is the unique bounded
solution of (5). O

A, By
Cn—<I O),HEZ.

If for some n € Z we have o(Cy,) NS = @, let
denote as V,,, the subspace of X2, corresponding
to the part of the spectra which is situated outsi-
de of S in the spectral decomposition for C,, and
V,,— the subspace X2, corresponding to the part
of the spectra which is situated inside of .S in the
spectral decomposition.

Let

Theorem 2.1. Let
Vz € S 3(2Ag — 22T + By) ™! € L(X),
J(zAn — 2°1 + By) ™t € L(X)
and
Ker(Cy_1Cn_g - ...-C1) N Voy = {0}.

Then the equation (5) has a unique bounded soluti-
on {x, | n€Z} C X for any bounded sequence
{yn | nEZ} C X iff

X2 =WHVn_,
where
W = {CN_lcN_Q - Cix ‘ x € ‘/bJr}

Proof. Using multiplication directly, it is not di-
fficult to be ensured that the resolvents of the
operators Cpy, Cy in some neighbourhood U of the
unit circle S look like

2F,(2)

R.(Cy) = ( 2Fo(2)(2] — Ap) +1 ) |

2F,(2) (2] — Ay)
zeU, ne{0,N}, (7)

where the operators

Fo(2) = (24, — 2T+ B,)™, 2 € U, n€ {0,N}
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exist because they exist on the unit circle and a
resolvent set is open.

Therefore, the spectra of the operators Cy, Cn
do not intersect the unit circle, particularly the
subspaces Vi_, Vo4 are defined.

Corresponding to the lemma, let consider the
equation (6). We can apply the theorem 1.2. Besi-
des injection, all the demands of the theorem are
satisfied. However, according to the proof of this
theorem in the article [5], we can note that injecti-
on was used only for the proof of the lemma 3 and
exceptionally for the restriction of the operator
Cn-1Cn_2-...- C7 on the set Vp . But such a si-
mplified weakened condition is following from the
condition of the theorem. O

3 Partial cases

1. Let apply the theorem 2.1 in the case when
B,=0, neZ.

The condition of the existence of the inverse
operators is equivalent to o(Ag)NS = &,0(AN)N
S = . In this case

Vor = {(u,v) |u € Xy, ve X},

Vie = {(u,0) | ue X,_}, n=0,N.

Really,
. A, 0\F AE 0
Cn:( I o) :<A1§1 0>’k€N’
therefore,

1C (u, 0)|| = [[(Aqu, A )| =

— 114l + (|45 a2 = oo, u € X, \ {0},

1Cn (w, 0l = [|(Afu, A7 ~Fu)|| =

= 145 _ul]? + | A Ful? = 0, u e X,
The condition Ker(Cy_1Cn—2-....C1)NVp4 =
{0} means that the kernel of the operator

AN 1AN_9-...- A1 O
CN_lcN_Q-...-cl_< N—14N =2 ! )

An_o-...- A1 (0]

does not include the elements from the set
{(u,v) | u € Xoy, v € X}, in other words

KGT(ANflAN72 Cet Al) N Xo+ = {6}
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Eventually, the condition of a decomposition
in a direct sum will look

V(zy,z2) € X2 I wy,wp) €W  ve Xy_ -

(71, 22) = (w1 + v, wa).

Here the operator Cny_1Cn_o - ... - Cy is the
injection on Vjy4, that is why the condition can be
rewrited as

V({El,l‘z) € X? Jluq € Xo+ Jlug € X3lv € Xn_

(z1,22) = (AN—1AN—2 - ... - Aju1 + v, u2).
Summarly, the next statement is true.

Corollary 1. Let B = ... = By = O,

og(Ag)NS=a,0(AN)NS =0 and
KeT(ANflAN72 S Al) NXoy = {6}

Then the equation (5) has a unique bounded soluti-
on {xy, | n€Z} C X for any bounded sequence
{yn | n€Z} C X iff

Vee X dlue Xy dveXy_

r=AN_1AN_2 ... - Aju+v.

This statement is some improvement of the
result of the theorem 1.2 in the partial case which
is considering.

2. Let apply the theorem 2.1 in the case when
A,=0, neZ.

The condition of the existence of the inverse
operators is equivalent to the condition

U(Bo) ns = @,O’(BN) ns=a.
Here

Vs = X4 (Bn), Va = X_(By), n=0,N.

HiiicHo,
CQk_ O Bn Qk_ Bn @) k_
no I O - O B, o
BE O
= (() Bﬁ)’ ke N,
therefore
||C2¥ (u, )| = [|(Bhu, Biv)|| =
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= JIIBE ull? + [|BE o] — +oc,
w,v € X\ {0},
102# (u,0)| = |[(Blu, BEv)|| =

= JIIBE_ull? + || BE_ol|> =0, w,v € X,
Note that

Cny_1CNn_g-...-C1 =

< BopBog_s - .. - By 9, )
@ Bop_1Bog—3-...- By

when N =2k +1, ke N, i

Cn-1CNn_2-...-C1 =

_ < o) Boj_1 ... By >
Bo_9Bog_4 - ... By @

when N =2k, k€ N.

Therefore, the condition
Ker(Cny_1Cn_g-...-C1) NVpy = {0}
means that the kernels of the operators
BNn_1+BN-3" ... Byy1-2[N/2)s

BN_2-BN—4- ... BN_a/(N-1)/2]

do not include the nontrivial elements of Xq;.
Eventually, the condition of decomposition in
a direct sum will look

V(l‘l,l‘g) S X2 3!(’IU1,1,U2) ew 3!(1)1,’02) e Xy_ :

(x1,22) = (w1 + v1,wa + v2),

or equivalently
Vo e X? Jw=Cu, ue X5, e Xz_ :

r=CN_1CNn_9-...-Clu+v.

Here the operator Cny_1Cpn_2-...-C1 is injecti-
on on Vg4, that is why the condition can be rewri-
ted as a union of two conditions

Ve X? e Xor ve Xy
r=By_1,BN_9-..." BN+1—2[N/2]U + v,
Vre X? Jue Xgy Ive Xy

xr=Bn_o-...- BN_Q[(N_l)/Q]u + .

So, such a statement appears to be true:
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Corollary 2. Let Ay = = Ay = 0O, 4. l'opomniit M.®., T'onuap [.B. IIpo obmexeni

o(By)NS=a,0(By)NS =2 and
KGT(BN,1 -Byn_3-...- BN+172[N/2}) NXotr = {6},

KGT(BN,2~BN,4'...~BN,2[(N,1)/2])QX0+ = {6}

Then the equation (5) has a unique bounded soluti-
on {x, | n€ Z} C X for any bounded sequence
{yn | n€Z} C X iff

Vo e X2 Ju e Xor Mve Xy

z=DBN_1-Bn_3...- Byy1on/2u+ v,

and
Vo e X2 Ju e Xor Mve Xy

T =DBN_2BNn_4-...- By_o(n_1)/2/u+ V.
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