


Advanced Polymer Materials and Technologies

Recent Trends and Current Priorities

Ministry of Education and Science of Ukraine Kyiv National University of Technology and Design Lviv Polytechnic National University

Advanced polymer materials and technologies: recent trends and current priorities

Перспективні полімерні матеріали та технології: останні тенденції та актуальні пріоритети

> Recommended by the Academic Council of Kyiv National University of Technology and Design

> > Lviv, 2022

Multi-authored monograph has been recommended by the Scientific Council of Kyiv National University of Technologies and Design (KNUTD) (Protocol No. 1 of 27.09.2022)

Edited by

Volodymyr Levytskyi – Prof. Dr. Head of the Department of Chemical Technology of Plastics Processing, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University

Viktoriia Plavan – Prof. Dr. Head of the Department of Applied Ecology, Technology of Polymers and Chemical Fibers

Volodymyr Skorokhoda – Prof. Dr. Director of the Institute of Chemistry and Chemical Technologies of the Lviv Polytechnic National University

Volodymyr Khomenko – Dr. Assoc. Prof. of the Department of Electrochemical Power Engineering and Chemistry

Reviewers:

Viktor Beloshenko – Prof. Dr. Head of the department of physical materials science of the Donetsk Institute for Physics and Engineering named after O. O. Galkin (DonIPE) of the National Academy of Sciences of Ukraine (NASU).

Valentin Sviderskyi – Prof. Dr. Professor of the Department of Chemical Technology of Composite Materials of the National Technical University of Ukraine "Ihor Sikorskyi Kyiv Polytechnic Institute".

Advanced polymer materials and technologies: recent trends and current priorities: multi-authored monograph / edited by V. Levytskyi, V. Plavan, V. Skorokhoda, V. Khomenko. – Lviv: Lviv Polytechnic National University, 2022. – 284 pages.

The monograph contains the materials of the 4th International Conference "Advanced Polymer Materials and Technologies", which was held on October 11, 2022 at the Kyiv National University of Technology and Design together with the Lviv Polytechnic National University. The monograph deals with the creation of new polymer composite materials and their processing technologies using extrusion, electroforming, 3D printing, and other methods; development of environmentally-oriented technologies and equipment for the production of polymeric materials for various purposes, including biodegradable ones. Considerable attention is paid to the creation of new polymer composite materials, in particular for environmental protection, using waste from the chemical industry.

The monograph will be useful for teachers, students and graduate students, scientists and manufacturers whose activities are related to the above mentioned topics.

The authors are responsible for the content of the publications.

© Team of authors, 2022 © LPNU, 2022 © KNUTD, 2022

CONTENTS

1.	Advanced polymer composites for flexible electrochemical	7
	energy storage	
	V. Khomenko, D. Patlun, B. Savchenko, N. Sova	
2.	An experimental study on the properties of recycleted	14
	polypropylene highly filled with the sand as a modern composite	
	material	
_	Łukasz Garbacz	
3.	Composites based on thermoplastic starch filled with cellulose	20
	waste from the food industry	
	R. Moskal, O. Ishchenko, V. Plavan, I. Liashok, M. Ivaskiv	~ ~
4.	Current trends in the production of polymer film materials for	25
	dental purposes	
-	V. Shvets, V.Plavan, O.Ishchenko, I.Liashok, M.Koliada	
5.	Development of a method of acid-polymeric surface	32
	modification of clay minerals for wastewater treatment	
	N. V. Tarasenko, Yu. O. Budash, V. P. Plavan, M. K. Koliada, R.	
(Ya. Petrunko	20
6.	Development of active films based on modified starches	38
7	Kuchynska D., Ishchenko O., Lyashok I.	41
7.	Development of epoxy composites resistant to impact loads	41
0	O. Sapronov, A. Buketov, L. Sapronova, P. Vorobiov	48
8.	Development of equipment for theproduction of hydrogel films	40
	by centrifugal molding O. Grytsenko, N. Baran, P. Voloshkevych, O. Strogan	
9.	Electrospinning possibilities for natural proteins with bioactive	57
9.	additives	57
	Akvilė Andziukevičiūtė Jankūnienė, Ugnė Zasčiurinskaitė, Aistė	
	Balčiūnaitienė, Jonas Viškelis, Erika Adomavičiūtė, Carmen	
	Gaidau, Maria Rapa, Virgilijus Valeika, Virginija Jankauskaitė	
10.	Evaluation of the graphite uniformity distribution in pvc matrix	64
10.	D. Novak, N. Bereznenko, V. Vasylenko, K. Chistylin	0.
11.	Features in obtaining hydrogel dressings for medical purposes	70
	O. Grytsenko, N. Baran, O. Kushta, M. Panas	
12.	Features of the protective effect of modified titanium dioxide	80
	in coatings based on epoxy compositions	
	T. Humenetskyi, N. Chopyk, K. Bratash	
13.	Filtration drying of food industry waste	85
	O. Ivashchuk, V. Atamanyuk, R. Chyzhovych, Z. Hnativ,	
	S. Kiiaieva	

14.	Hybrid hydrogels based on water-soluble polymers with the addition of clay of the montmorylonite type	87
15.	I. Liashok, O. Ishchenko, A. Godunko, D. Kuchynska Hydrogel copolymers of methacrylic esters for controlled drug release systems	92
	Volodymyr Skorokhoda, Nataliya Semenyuk, Galyna Dudok, Yuriy Melnyk	
16.	Hyaluronic acid: a natural biopolymer of biomedical and industrial applications	98
17.	I. Okhrimenko, O. Ishchenko, I. Liashok Increasing anti-corrosion properties of polyurethane coatings through the functional filling	102
18.	T. Humenetskyi, L. Bilyi, N. Chopyk Improving the properties of polyurethane compositions by inorganic and organic additives	107
19.	A. Kolodiy, V. Plavan, Yu. Budash, S. Titarenko Innovative technologies for lighting wine materials using organic polymers D. Kichura, T. Chaikivskyi	113
20.	Investigation of the resistance of fibrous materials based on acrylonitrile copolymers to thermal destruction Olha Haranina, Yana Red'ko, Yevheniia Romaniuk, Anna Vardanyan	116
21.	Metod of strengthening of film hydrogel membranes based on 2- hydroxyetylmetacrylate copolymers and polyvinylpyrrolidone Nataliia Baran, Oleksandr Grytsenko, Volodymyr Moravskyi	118
22.	New acrylate polymers – basis of paints for drawing on water via using ebru technology Vitalij Distanov, Vitalij Bondarev, Myronenko Liliia	124
23.	New method of plastics waste management Filip Longwic	130
24.	New technology of tubular products based on composite hydrogels production B. Berezhnyy, O. Grytsenko, M. Kushnirchuk, Ľ. Dulebová	134
25.	Nonwoven filtering materials from degradable filled polymers Y. Bulhakov, B. Savchenko, O. Slieptsov, N. Sova	142
26.	Obtaining highly filled metal containing polymer composites A. Kucherenko, Ľ. Dulebova, V. Moravskyi	146
27.	Optimization of the synthesis and technological aspects fabrication of pvp- <i>graft</i> -phema hydrogel membranes Yu. Melnyk, V. Skorokhoda	154

28.	Physico-chemical features of obtaining modified polyester	162
	composites	
	Bozhena Kulish, Diana Katruk, Volodymyr Levytskyi, Andrii Masyuk	
29.	Polyhydrocybutyrate: features of biosynthesis, identification	170
	and properties	
	I. Semeniuk I., Yu. Melnyk, Yu. Stetsyshyn, N. Semenyuk, V.	
	Skorokhoda, O. Karpenko	
30.	Polylactide composites with calcium-containing fillers	176
	Dmytro Kechur, Bozhena Kulish, Volodymyr Levytskyi, Andrii	
	Masyuk	
31.	Polylactide starch-containing composites: Preparation and	184
	properties Andrii Masyuk, Dmytro Kechur, Bozhena Kulish,	
	Volodymyr Levytskyi	
32.	Polymeric foams in extrusion additive manufacturing	192
	O. Slieptsov, B. Savchenko, S. Osaulenko, T. Stefaniv	
33.	Polymer-mineral compositions for leather finishing	197
	Anna Bondaryeva, Olena Mokrousova, Olena Okhmat, Iryna	
	Kopytina	
34.	Preparation of polyurethane composites and their antibacterial	199
	and photo-responsive self-healing performances	
	L. Cao, W. Wang	
35.	Protective materials based on hydrocarbon oligomers	201
	D. Kichura, R. Subtelnyi	
36.	Recycling options for packaging wastes of traditional and	204
	degradable polymeric materials	
	B. Savchuk, L. Rozvora, B. Savchenko, N. Sova	
37.	Regulations of obtaining silver nanoparticles applying the	215
	polyvinylpyrrolidone as a reducer and stabilizer	
	Volodymyr Skorokhoda, Galyna Dudok, Natalia Semenyuk	
38.	Rheological parameters of polymer fire-retardant coatings with	215
	R120-R150 fire resistance rate	
	R. Vakhitov, V. Drizhd, L Vakhitova, V. Bessarabov, V. Strashnyi	
39.	Robotic large scale additive manufacturing with FGF	217
	technology	
10	P. Štefčák, I. Gajdoš, E. Spišák	
40.	Simulation of distributive and dispersive mixing in extruder	227
	with rotational barrel segment	
	Ivan Gajdoš, Slota Ján, Pavol Štefčák	

41.	Structuring of polymer films by uv irradiation in the presence	233
	of modified epoxy resin	
42.	Nataliia Chopyk, Mykhaylo Bratychak, Viktoriia Zemke Study of the filler content dependence on the adhesive strength	237
42.	Study of the filler content dependence on the adhesive strength	257
	for hydroxymethacrylate with polyvinylpyrrolidone compositions	
	•	
43.	Mykhaylo Bratychak, Viktoriia Zemke, Nataliia Chopyk	243
43.	Synthesis of a new supramolecular polymeric system based on β-cyclodextrin and bisphenol s	243
11	I. Quaratesi, R. Gliubizzi, P. Neri, C. Gaeta, E. Badea	251
44.	Technologies for the obtaining highly soluble polymer	251
	composite materials with active pharmaceutical ingredients	
	Volodymyr Bessarabov, Vadym Lisovyi, Viktoriia Lyzhniuk,	
	Viktor Kostyuk, Galyna Kuzmina, Andriy Goy, Svitlana Hureieva,	
	Olena Ishchenko, Volodymyr Yaremenko	252
45.	The influence of the nature of the polymer binder on electrical	253
	conductivity of polymer composites K. Marchukova, O. Butenko,	
	V. Khomenko, V. Barsukov, V. Tverdokhlib, O. Chernysh	• • • •
46.	The potential of solid dispersion systems for increasing the	260
	solubility of an anti-inflammatory active pharmaceutical	
	ingredient Viktoriia Lyzhniuk, Vadym Lisovyi, Volodymyr	
	Bessarabov, Galyna Kuzmina, Viktor Kostiuk, Karyna Savchenko,	
	Artem Kharchenko	
47.	The role of polyvinylpyrrolidone in the formation of	263
	nanocomposites based on acompatible polycaproamide and	
	polypropylene Volodymyr Krasinskyi	
48.	Thermostable polymer composites for tribological purpose	268
	Oleh Kabat, Volodymyr Sytar, Janis Zicans, Remo Merijs Meri	
49.	Water repellent surfaces stability	275
	O. Myronyuk, D. Baklan	
50.	Water-soluble collagen extraction from leather waste	277
	Lesia Maistrenko, Olena Okhmat, Olga Iungin	
	THE AUTHORS INDEX	281

POLYMER-MINERAL COMPOSITIONS FOR LEATHER FINISHING

A. BONDARYEVA¹, O. MOKROUSOVA^{1,2}, O. OKHMAT², I. KOPYTINA² ¹State University of Trade and Economics, Kyoto str., 19, Kyiv, Ukraine, 02156 <u>Aa-aa@i.ua</u>, <u>olenamokrousova@gmail.com</u> ²Kyiv National University of Technologies and Design, Nemyrovycha-Danchenka str., 2, Kyiv,

Ukraine, 01011oxmat.oa@knutd.edu.ua, i.v.kopytina@gmail.com

The paper presents information on application of polymer-mineral compositions for leather finishing. Modified montmorillonite in combination with a polymer in the coating composition increase the high-quality finishing coating on the leather.

Polymeric materials are mainly used for the natural leather finishing coating. The polymer coating increases the water resistance of the leather and operational loads. The need to create a whole complex of coating properties increases the demand for multifunctional materials for the finishing coating at the leather manufacturing. One of the trends is the using of polymer-mineral finishing materials based on highly dispersed clays [1]. These clays increase the heat resistance of the coating, its resistance to wet friction, repeated bending. The aesthetics of the coating on the leather increases.

With the addition of a mineral component, the polymer-mineral compositions of three types can be obtained: microcomposite, intercalation composite, and exfoliation composite. Depending on the conditions of synthesis and the type of mineral component, mixed polymer-mineral compositions can be formed. Mixed compositions contain few types of composites in different proportions [2, 3].

Polymer-mineral compositions often contain layered aluminosilicates as a mineral component, for example, montmorillonite (MMT). A modified dispersion of montmorillonite is used to create polymer-mineral finishing compositions. The dispersion is added to the polymer while stirring at a rotation frequency of 1500 rpm.

The addition of the mineral component into the polymer in the amount up to 1.0 % of the polymer mass allows to the production of microcomposites. At the

same time, polymer molecules can penetrate the interlayer structure of montmorillonite. In this case, the polymer dispersion loses its structural stability. An increase of the mineral component amount to 1.5-2.0% of the polymer mass contributes to the formation of a mixed type of composite and to the obtaining the exfoliating structures.

The occurrence of chemical bonds between the components of polymermineral compositions is confirmed by IR–spectroscopic studies. When studying the change in the optical density of polymer-mineral compositions relative to acrylic polymer, the formation of coordination bonds of the polymer with active functional centers of the basal surfaces of aluminosilicate (MMT–Si–O– and Si– OH) was proved. Presented the effect of polymer comprising into the interlayer structure of the montmorillonite. The intercalative structure of the polymer-mineral composition was proved.

The highly sorption area surface of the montmorillonite helps to adsorb the polymer and to create the polymer-mineral compositions. The adsorption improves to stabilize the polymer structure and to increase the colloidal stability of the finishing composition. Such compositions are effective for forming a finishing coating of elastic leathers of the different kinds.

References

- 1. Bondaryeva, A.; Mokrousova, O. The acrylic/montmorillonite nanocomposites for leather finishing. *Advanced Materials and Systems, Proceedings of the 8 International Conference*, Bucharest, Romania, October 1–3, 2020, INCDTP, 2020. pp 43–48.
- 2. Mittal, V. Polymer Layered Silicate Nanocomposites. *Int. J. Mol. Sci: Composite Materials*. **2009**, 2, 992–1057.
- 3. Abdel-Aziz, H. M.; El-Zahhar, A. A.; Siyam, T. Sorption Studies of Neutral Red Dye onto Poly(acrylamide-co-maleic acid)-Kaolinite/Montmorillonite Composites. *J. Appl. Polym. Sci.* **2012**, 124, 386–396.