MI’KHAPOJIHA HAYKOBO-IIPAKTUYHA
IHTEPHET-KOH®EPEHIIIA

«TEHJAEHIIII TA TEPCIEKTHUBU PO3BUTKY
HAYKH I OCBITH
B YMOBAX I'NTOBAJII3AIII»

BUITYCK 121

30 BepecHs 2025 p.

M. IlepesiciiaB

YHIBEPCUTET I'PUI'OPIA CKOBOPOAU
B IIEPESICIIABI

Pana Moi01uX y4eHUX YHIBEPCUTETY

Marepianu
MixHapoIHOT HAYKOBO-TIPAKTUYHO1 IHTEPHET-KOH(PEPEHITiT
«TEHJAEHII TA TEPCHEKTUBHU PO3BUTKY
HAYKH 1 OCBITHU B YMOBAX I''TOBAJI3AIIID»
30 Bepecus 2025 poky
Bum. 121

301pHUK HAYKOBHX Ipalb

[Tepesicna — 2025

VIIK 001+37(100)
BBK 72.4+74(0)
T 33

Martepianun MikHapOAHOT HAYKOBO-TIPaKTUYHOI iHTepHET-KoH(pepeHii « Tennentii
Ta MEPCIEKTUBU PO3BUTKY HAYKH 1 OCBITH B yMOBax riobaiizamii»: 30. HayK. mpalb.
[Tepesicnas, 2025. Bum. 121. 222 c.

r'OJIOBHUM PEJAKTOP:
Kouyp B. Il. — noktop icropuaaux Hayk, nmpodecop, akagemik HAITH Ykpainu

PEJAKIIHHA KOJIETIA:

BoaoBuk JI. M. — kanauaaT reorpadiqHuX HayK, JTOLCHT

I'y3yn A. B. — xanauaaT 010J0T1YHUX HAYK, JOLIEHT

€BTymenko H. M. — kaH1u/1aT €KOHOMIYHUX HAYK, JOLICHT

Kukors C. M. — kaHAMAAT ICTOPUYHKUX HAYK (BIAMOBIIATbHUM 32 BUITYCK)
Hocayenko B. M. — kaHIuaT NeJaroriyiuX HayK, IOLEHT

Pynenko O. B. — kanauaT NcUXo0JIOTIYHUX HAYK, JOLICHT

CanuxoB A. A. — kanauaaT (i3uKo-MaTeMaTUYHUX HaykK, noleHT (Ka3axcran)
Crasipenko O. b. — kanauaaT GUIONOTIYHUX HAYK, JOIIEHT

Xaamarosa Ill. C. — kanauaaT MeIUYHUX HAYK, TOIEHT (Y30eKHuCTaH)
FOxumenko H. @. — kanaunar GputocoPchbkux HayK, TOIEHT

30ipHUK MatepianiB KOHGEpeHIll BMIIIy€e pe3yJbTaTh HAYKOBHUX JOCIIIKEHb
HayKOBHX CITIBPOOITHUKIB, BUKJIaIaviB BUIITMX HABYAJBLHUX 3aKJIa]iB, TOKTOPAHTIB,
acmipaHTiB, CTYAEHTIB 3 aKTyaJlbHUX NOPOOJEM TyMaHITAPHUX, MPUPOAHUYHX 1
TEXHIYHUX HayK

Bionosioanvricme 3a epamomuicmo, agmenmuynicms yumam, 00CMOBIPHICMb
¢axmis i nocunanv Hecyms agmopu nyoniKayiu

©VYmuiepcutet ['puropist CkoBopoau
B [lepesicnani
©Paia MOJIOIMX YYEHUX YHIBEPCUTETY

TenneHuii Ta nepcneKTHBY PO3BUTKY HAYKH i OCBiTH B yMOBax rjodaJizamii

2. Barba L. A. Defining the Role of Open Source Software in Research Reproducibility.
Computer. 2022. Vol. 55, no. 8. P. 40—48. URL: https://doi.org/10.1109/mc.2022

3. Duan C. Advancing open education through open-source software: examining UTAUT 2
factors in adoption and implementation. Asian Association of Open Universities Journal. 2024.
URL: https://doi.org/10.1108/aaouj-09-2024-0119

4. Nirmani [.A.P. Barriers to digital participation in developing countries: Identifying
technological, social, and cultural obstacles to community involvement. GSC Advanced Research
and Reviews. 2025. Vol. 23, no.2. P.061-071. URL: https://doi.org/10.30574/gscarr.2025.
23.2.0130

5. Razi M., Batan A. Opportunities and Challenges of Cloud Computing in Developing
Countries. Artificial Intelligence in Society. 2023. Vol.3, Nol. P.1-8. URL:
https://researchberg.com/index.php/ai/article/view/93

6. Xu Q., Yu Q., Qian L. Analysis and Evaluation of Open Source Scientific Entity Datasets.
Data Intelligence. 2024. URL: https://doi.org/10.3724/2096-7004.di.2024.0009

VK 004.94
Yehor Momot, Maryna Vyshnevska
(Kyiv, Ukraine)

MODERN ARCHITECTURES FOR INFORMATION RETRIEVAL
AND RECOMMENDER SYSTEMS

This paper explains, in simple words, how modern search and recommendation systems work.
We start from keyword matching (BM25) and then describe vector-based methods (dual-encoders),
token-level matching (ColBERT) and re-ranking. We also show why fast vector indexes like FAISS
and HNSW are needed to search large collections. For recommendations, we outline the two-stage
design (candidate generation — ranking) and neural models such as Neural Collaborative
Filtering. We finish with evaluation notes and practical trade-offs.

Keywords: information retrieval;, recommender systems; BM?25; dense retrieval;, vector
indexes; two-stage ranking; evaluation.

YV yiti cmammi npocmumu cnoeamu nOSICHIOEMbCA, K NPAYIOIOMb CYUACH CUCTEMU NOULYKY
ma pexomeHnoayit. Mu noyunaemo 3 nowyKy 3a kaodogumu crosamu (BM?25), a nomim onucyemo
B8eKMOPHI Memoou (nodsitini kooepu), noulyk na pieni moxerie (ColBERT) ma nepepandicyearnHs.
Mu maxooic noxkaszyemo, YoMy Oas NOWLYKY V GENUKUX KOLEKYIAX NOMpIiOHi WEUOKI 6eKMOPHI
inoexcu, maxi ax FAISS ma HNSW. Il]Jooo pekomenoayiti, Mu onucyemo 080Ccmynenesuti Ou3atit
(cenepyeanms KaHouoamie — pandiCyeants) ma Hevponni mooeni, maxi ax Neural Collaborative
Filtering. Ha 3a6epuienns Mu HAB0OUMO NPUMIMKU WOOO OYIHKU MA NPAKMUYHI KOMAPOMICU.

Knwuogi cnoea: nowyxk ingopmayii; cucmemu pexomenoayiti;, BM25; winvuuii nowyx;
8eKMOPHI IHOEKCU, 080CMYNeHe8e PAHIICYBANHS, OYIHKA

Search (IR) and recommendation (RS) solve very similar problems. In search, the user enters
a query and expects to receive high-quality documents. In recommendations, the system suggests
items that may be of interest to the user. In both cases, the collection is huge, and the response
must be provided quickly. Therefore, many real-world systems use a simple idea: a fast first pass
to collect candidates and a slower second pass to rank them carefully [1, pp. 191-193]. This
division makes it easier to scale and debug the entire pipeline. The document and query can be
represented as lists of words with weights. BM25 is a practical formula that increases the weight
of important words but normalises the length of the document. It works okay without any training
data and remains a strong choice for the first pass in real-world systems [6, pp. 333-340;
5, pp. 1-4].

132

https://doi.org/10.30574/

TenneHuii Ta nepcneKTHBY PO3BUTKY HAYKH i OCBiTH B yMOBax rjodaJizamii

This separation also corresponds to classical IR intuition: simple matching identifies a set that
is likely to contain the answer, while a separate ranking stage applies a more precise relevance
assessment [5, pp. 1-4]. In the BM25 family, term frequencies are saturated so that very frequent
words do not dominate, inverse document frequency reduces the weight of common words, and
the length normalisation parameter controls how heavily longer documents are penalised. Smart
default settings already provide a solid foundation and are easy to configure in production; it is
common practice to first fix the BM25 base and then add trained components [6, pp. 333—389].

Instead of exact word matching, dense search maps texts to a shared vector space so that
similar meanings are close together. However, using only one vector per text can lead to the loss
of subtle signals at the word level, such as names or numbers. ColBERT stores a vector for each
token and compares tokens at a later stage of processing. This preserves most of the accuracy of
heavy cross-encoders but remains indexed and fast at runtime [4, pp. 39—41]. A practical pipeline
is BM25 — dense search — ColBERT re-ranking. This combination covers exact words, semantic
matches, and final accuracy.

A useful way to understand ColBERT is that it defers heavy computation to the efficient
generation of candidates. Instead of evaluating a document with a single scalar product, query
tokens find their best matching document tokens and then aggregate these matches. This ‘late
interaction’ allows us to pre-compute and index document token embeddings, while still capturing
many fine-grained patterns that single-vector models miss [4, pp. 39-43]. Combined with
lightweight

The first stage of the search results in a conveyor that is accurate and can be deployed on a
large scale.

Vector search requires special indexes for speed. FAISS groups vectors into clusters,
compresses them using product quantisation, and uses very fast GPU operations. This makes
billion-scale searches practical [3, pp. 1-3]. In practice, many production systems also use
approximate nearest neighbour graph structures; the exact choice depends on the latency/replay
budget. Engineers tune a small set of parameters to find a compromise between quality and speed.

In FAISS, in particular, it is common practice to build an inverted file (IVF) over centroids
and check only a small number of lists during a query; product quantisation (PQ) stores compact
codes for vectors within each list so that we can quickly scan many candidates on the CPU or GPU
[3, pp. 1-3]. The number of lists and the number of lists checked per query determine the
recall/latency boundary, while the PQ configuration determines the memory/accuracy boundary.
This division of tasks is convenient from an operational point of view: we can first select latency
targets and then gradually optimise memory and recall [3, pp. 1-3].

Large-scale recommendation systems typically follow the same two-stage design. First,
candidate generation selects a small subset from millions of items using user and context
characteristics. Then, ranking sorts the candidates using additional characteristics and goals
(freshness, diversity). The YouTube paper clearly describes this model and shows why it scales
okay [1, pp. 191-195]. Traditional matrix factorisation uses a simple scalar product between user
and item vectors. Neural collaborative filtering (NCF) replaces this with a small neural network
that can learn a better interaction function based on data and often outperforms classical models
on standard datasets [2, pp. 173—175]. In practice, teams combine trained models with business
rules to avoid trivial popularity cycles. If the task requires exact words (legal codes, product
identifiers), the BM25 method remains the best. If the task concerns meaning and paraphrases,
dense search helps.

A safe hybrid option is to use BM25 for recall, dense methods for semantic coverage, and
ColBERT as a fine-grained final step [6, pp. 352-360; 4, pp. 39-43].

From a modelling perspective, popular candidate generation architectures train separate user
and item encoders and optimise them for maximum internal product search. This enables fast
approximate search on embedded items during service and scales to very large catalogues
[1, pp. 191-195]. At the ranking stage, more rich signals (context, relevance, calibration goals) are

133

TenneHuii Ta nepcneKTHBY PO3BUTKY HAYKH i OCBiTH B yMOBax rjodaJizamii

used and training is performed with goals aligned with business goals, such as number of clicks or
viewing time [1, pp. 191-197]. Within the NCF family, the generalized matrix factorization path
captures linear interactions, the MLP path captures nonlinear interactions, and the combined
NeuMF architecture combines their strengths for top-K recommendations [2, pp. 173-182].

The choice of index determines the practical parameters. In FAISS, we choose how many
clusters to explore and how much compression to apply; more exploration improves recall but
takes time [3, pp. 1-3]. Systems often maintain a compressed ‘cold’ index for the entire catalogue
and a small ‘hot’ index for popular items. Training dual encoders benefits from hard negatives —
very similar but incorrect fragments — that force the model to pay attention to details.

Offline metrics such as Precision@k, Recall@k, and nDCG are useful, but we also care about
coverage and useful novelty in recommendations to avoid a narrow ‘filter bubble.” Online A/B
tests check whether offline benefits translate to real users [1, pp. 195-197]. For search, it is useful
to segment queries by type and language to ensure that improvements are broad and not limited to
a small subset of simple cases [5, pp. 2-3].

It is also important to conduct measurements using a reliable methodology. Relevance ratings
should be collected for a representative sample of queries; scoring supports metrics such as nDCG,
where higher positions in the ranking are discounted less heavily [5, pp. 2-3]. Pooling strategies
help to collect ratings efficiently, but queries that have been heavily optimised during development
should be avoided. Short-term click metrics are useful for recommendations, but teams typically
validate improvements through controlled experiments and track long-term engagement and
diversity [1, pp. 195-197].

For clarity, we will define the terms used in the text. A query is what the user enters; a
document is what the system returns. Relevance means how useful a document is for the query.
Embedding is a list of numbers that reflects the value of the text. An index is a data structure that
helps to quickly find elements. ANN (approximate nearest neighbour) is a family of methods that
quickly finds vectors close to a given vector. Candidate generation is the first step, which finds a
small set of potentially relevant elements. Ranking is the second step, which orders them
[5, pp. 1-4; 3, pp. 1-3].

A simple search system can be created in a few steps. (1) Prepare documents and create a
BM25 index to obtain a robust base without any training [6, pp. 333-340]. (2) Add a double
encoder and compute vector embeddings for snippets; store them in FAISS with IVF-PQ and start
with a moderate number of clusters, adjusting them based on latency [3, pp. 1-3]. (3) Train using
the extracted hard negatives so that the model learns to distinguish subtle differences. (4) Add
CoIBERT re-ranker for a few hundred top candidates to gain accuracy [4, pp. 39—41].

A simple recommendation system works in similar steps. (1) Collect user interactions with
products and basic product metadata (category, price). (2) Create embeddings for each product and
build a fast ANN index (e.g., [IVF-PQ in FAISS) to quickly find similar products [3, pp. 1-3]. (3)
To generate candidates, combine the search for similar items with a simple popularity check to
ensure diversity. (4) Train a ranking model (e.g., NCF) based on past clicks and add constraints
for freshness and diversity [2, pp. 173—175; 1, pp. 191-195]. (5) Evaluate offline on unused data
and validate with small A/B tests.

Common mistakes include: focusing only on accuracy (which can reduce catalogue coverage),
omitting hard negatives during training (which leads to weak dense models), and ignoring cost
(which leads to overly complex pipelines). Use compression, caching, and clear service-level
objectives. Finally, don't forget to update your data regularly to avoid outdated recommendations;
plan for re-indexing and model updates [3, pp. 1-3; 1, pp. 195-197].

Many real-world systems are multilingual and multimodal. In search, the simplest baseline is
to index each language separately and then apply the same BM25 + dense + ColBERT pipeline to
each language. If cross-language search is needed, multilingual encoders help but require careful
evaluation. In recommendations, metadata and embedding from different modalities improve the
cold start problem and can be mixed at the ranking stage [5, pp. 1-4; 1, pp. 191-195].

134

TenneHuii Ta nepcneKTHBY PO3BUTKY HAYKH i OCBiTH B yMOBax rjodaJizamii

The practical checklist is short. Stick to a clear baseline (BM25 for search; simple popularity
plus item similarity for recommendations). Add one improvement at a time and measure carefully.
Use a small, stable set of metrics: nDCG@k and latency for search; CTR, reach, and diversity for
recommendations. Control costs with compression (PQ), caching, and smart packet sizes; first
choose FAISS settings that fit your latency budget, then gradually increase the level of
reproduction [3, pp. 1-3]. Prefer a two-stage design so that a fast first pass protects tail latency and
a second pass focuses on quality [1, pp. 191-195]. Document assumptions and data filters
(language, time frame, security rules) to ensure that results are reproducible [5, pp. 1-4]. Finally,
record data update and retraining schedules (e.g., daily reindexing, weekly retraining) to keep the
system from becoming obsolete [6, pp. 352-360; 3, pp. 1-3; 1, pp. 195-197].

Conclusion. Modern IR and RS are based on a small set of ideas that work okay together: fast
first pass, stronger second pass, and efficient vector index. BM25 is a reliable start; dense search
and ColBERT add semantic power; two-stage recommendation systems scale in production. With
careful evaluation and simple operating rules, these systems can be implemented by small teams
and student projects [5, pp. 1-4; 6, pp. 333-340; 1, pp. 191-195]. In practice, the winning recipe
is a hybrid: BM25 for retrieval, a dense search engine for semantic matches, and a precise re-
ranker for the best results, as well as candidate generation and pair ranking on the recommendation
side [4, pp. 39-41; 1, pp. 191-195].

REFERENCES

1. Covington P., Adams J., Sargin E. Deep Neural Networks for YouTube Recommendations.
In: RecSys ’16. ACM, 2016. PP. 191-198.

2. He X., Liao L., Zhang H., Nie L., Hu X., Chua T.-S. Neural Collaborative Filtering. In:
WWW ’17. ACM, 2017. PP. 173-182.

3. Johnson J., Douze M., Jégou H. Billion-Scale Similarity Search with GPUs.
arXiv:1702.08734, 2017. 25 p.

4. Khattab O., Zaharia M. ColBERT: Efficient and Effective Passage Search via
Contextualized Late Interaction over BERT. In: SIGIR 2020. PP. 39-48.

5. Manning C. D., Raghavan P., Schiitze H. Introduction to Information Retrieval. Cambridge
University Press, 2008. 482 p. (Online edition: Stanford NLP).

6. Robertson S., Zaragoza H. The Probabilistic Relevance Framework: BM25 and Beyond.
Foundations and Trends in Information Retrieval. 2009. Vol. 3(4). PP. 333-389.

YK 004.94
Artemii Muzychenko, Maryna Vyshnevska
(Kyiv, Ukraine)

THE RISE OF QUANTUM COMPUTING: OPPORTUNITIES AND RISKS

This article provides a comprehensive analysis of the phenomenon of quantum computing as
a technology capable of fundamentally changing science, the economy, and the global security
system. It examines the fundamental principles of quantum computers, such as superposition and
entanglement, and analyzes their potential capabilities in the fields of medicine, materials science,
and artificial intelligence.

Keywords: quantum computing, qubit, superposition, quantum advantage, cryptography,
Shor's algorithm, post-quantum cryptography, cybersecurity.

YV cmammi npogooumvcs KOMNIEKCHUU aHANI3 (eHoMeHY KBAHMOBUX OOYUCTEeHb SK
MexHoN02ll, Wo 30amHa KAPOUHANLHO 3MIHUMU HAYKY, €KOHOMIKY ma cucmemy 2100anbHOI
be3znexu. Posenadaromscs pyHoamenmanbHi RPUHYUNU pooomu K8aHmMoBUX KoMN tomepie, maxi sx
cynepno3uyisi. ma 3aniymaiicms, a MAKONC AHANIZYIOMbCA IXHI NOMEHYIUHI MONCIUBOCMI
cghepax meOuyuHu, Mamepiano3sHagCmea ma WnmyyHo20 inmenexkmy.

135

	f06fb8cd27518d25c92dfbab91d491f839bb55c784b41316de53ac92a38e1cee.pdf
	15c0bd737f81cf08ed405d0584e1d2c570fba69d9a05cd9441a25fed8d0929f1.pdf
	15c0bd737f81cf08ed405d0584e1d2c570fba69d9a05cd9441a25fed8d0929f1.pdf

	dbc0fdd5ac617507ccd86a726ff9cbec2155a3e0734f6f6c3ad6267ab7267705.pdf

