Please use this identifier to cite or link to this item: https://er.knutd.edu.ua/handle/123456789/31397
Title: Deep machine learning for innovative educational management under crisis conditions
Authors: Krasnyuk, Svitlana
Keywords: innovative management
classical & deep machine learning
educational management
crisis conditions
artificial intelligence
Issue Date: Sep-2025
Publisher: Lulu Press, Inc.
Citation: Krasniuk S. Deep machine learning for innovative educational management under crisis conditions / S. Krasniuk // Trends, Issues, and Challenges in Modern Science : proceedings of the 2nd International Scientific Conference (Cambridge, United Kingdom, 5 September 2025). – United Kingdom : Lulu Press ; Inc., 2025. – рр. 104–107.
Abstract: Modern education faces uncertainty driven by crises, pandemics, and rapid technological shifts. These challenges demand a transition from traditional reactive management to adaptive, data-driven strategies. Deep machine learning (DML), utilizing multi-layer neural networks, provides tools for predictive analytics, risk assessment, and intelligent decision-making. In educational management, DML supports crisis forecasting, adaptive planning, personalized learning, resource optimization, and quality control. Its key strength lies in adaptability and continuous learning, ensuring accurate predictions and quick responses to instability. Integrating DML enables resilience and innovation, shifting education toward proactive, intelligent management. Future developments include hybrid models combining deep learning with symbolic AI for enhanced interpretability and strategic effectiveness during complex crises.
URI: https://er.knutd.edu.ua/handle/123456789/31397
Faculty: Інститут права та сучасних технологій
Department: Кафедра філології та перекладу (ФП)
Appears in Collections:Кафедра філології та перекладу (ФП)
Матеріали наукових конференцій та семінарів

Files in This Item:
File Description SizeFormat 
104-107.pdf349,89 kBAdobe PDFView/Open
Content.pdf259,92 kBAdobe PDFView/Open
Title.pdf423,05 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.