Please use this identifier to cite or link to this item: https://er.knutd.edu.ua/handle/123456789/31596
Title: Leveraging hybrid machine learning for big data challenges in contemporary literary studies
Authors: Krasniuk, Svitlana
Keywords: Hybrid machine learning
hybrid system
literary studies
Issue Date: Oct-2025
Publisher: by LLC SPC «InterConf» JAPAGA
Citation: Krasniuk S. Leveraging hybrid machine learning for big data challenges in contemporary literary studies / S. Krasniuk // Science and Education in Progress : with the Proceedings of the 6th International Scientific and Practical Conference (October 16-18, 2025; Dublin, Ireland). – Dublin : by LLC SPC «InterConf» JAPAGA, 2025. – Р. 80-83.
Abstract: Hybrid and ensemble machine learning strategies are gaining particular importance. Their difference lies in the integration of different methods, which allows combining the advantages of several algorithms and neutralizing their limitations. Hybrid systems combine statistical models with deep learning algorithms and natural language processing methods, creating multi-level analytics for humanitarian data. Ensemble approaches (begging, boosting, stacking, etc.) combine the results of several models, ensuring high stability and accuracy of results.
URI: https://er.knutd.edu.ua/handle/123456789/31596
Faculty: Інститут права та сучасних технологій
Department: Кафедра філології та перекладу (ФП)
Appears in Collections:Матеріали наукових конференцій та семінарів

Files in This Item:
File Description SizeFormat 
Title_DUBLIN.pdf1,84 MBAdobe PDFView/Open
Content_DUBLIN.pdf248,97 kBAdobe PDFView/Open
DUBLIN 80-83.pdf255,61 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.